Reputation: 1325
I'm trying to collapse the below dataframe into rows containing continuous time periods by id
. Continuous means that, within the same id
, the start_date
is either less than, equal or at most one day greater than the end_date
of the previous row (the data is already sorted by id, start_date and end_date). All rows that are continuous should be output as a single row, with start_date
being the minimum start_date (i.e. the start_date of the first row in the continuous set) and end_date
being the maximum end_date
from the continuous set of rows.
Please see the desired output at the bottom.
The only way I can think of approaching this is by parsing the dataframe row by row, but I was wondering if there a more pythonic and elegant way to do it.
id start_date end_date
1 2017-01-01 2017-01-15
1 2017-01-12 2017-01-24
1 2017-01-25 2017-02-03
1 2017-02-05 2017-02-14
1 2017-02-16 2017-02-28
2 2017-01-01 2017-01-19
2 2017-01-24 2017-02-07
2 2017-02-07 2017-02-20
Here is the code to generate the input dataframe:
import numpy as np
import pandas as pd
start_date = ['2017-01-01','2017-01-12','2017-01-25','2017-02-05','2017-02-16',
'2017-01-01','2017-01-24','2017-02-07']
end_date = ['2017-01-15','2017-01-24','2017-02-03','2017-02-14','2017-02-28',
'2017-01-19','2017-02-07','2017-02-20']
df = pd.DataFrame({'id': [1,1,1,1,1,2,2,2],
'start_date': pd.to_datetime(start_date, format='%Y-%m-%d'),
'end_date': pd.to_datetime(end_date, format='%Y-%m-%d')})
Desired output:
id start_date end_date
1 2017-01-01 2017-02-03
1 2017-02-05 2017-02-14
1 2017-02-16 2017-02-28
2 2017-01-01 2017-01-19
2 2017-01-24 2017-02-20
Upvotes: 2
Views: 455
Reputation: 19947
def f(grp):
#define a list to collect valid start and end ranges
d=[]
(
#append a new row if the start date is at least 2 days greater than the last date from previous row,
#otherwise update last rows's end date with current row's end date.
grp.reset_index(drop=True)
.apply(lambda x: d.append({x.start_date:x.end_date})
if x.name==0 or (x.start_date-pd.DateOffset(1))>grp.iloc[x.name-1].end_date
else d[-1].update({list(d[-1].keys())[0]:x.end_date}),
axis=1)
)
#reconstruct a df using only valid start and end dates pairs.
return pd.DataFrame([[list(e.keys())[0],list(e.values())[0]] for e in d],
columns=['start_date','end_date'])
df.groupby('id').apply(f).reset_index().drop('level_1',1)
Out[467]:
id start_date end_date
0 1 2017-01-01 2017-02-03
1 1 2017-02-05 2017-02-14
2 1 2017-02-16 2017-02-28
3 2 2017-01-01 2017-01-19
4 2 2017-01-24 2017-02-20
Upvotes: 1