Reputation: 9198
I have a 1-D array in numpy v
. I'd like to copy it to make a matrix with each row being a copy of v
. That's easy: np.broadcast_to(v, desired_shape)
.
However, if I'd like to treat v
as a column vector, and copy it to make a matrix with each column being a copy of v
, I can't find a simple way to do it. Through trial and error, I'm able to do this:
np.broadcast_to(v.reshape(v.shape[0], 1), desired_shape)
While that works, I can't claim to understand it (even though I wrote it!).
Part of the problem is that numpy doesn't seem to have a concept of a column vector (hence the reshape
hack instead of what in math would just be .T
).
But, a deeper part of the problem seems to be that broadcasting only works vertically, not horizontally. Or perhaps a more correct way to say it would be: broadcasting only works on the higher dimensions, not the lower dimensions. I'm not even sure if that's correct.
In short, while I understand the concept of broadcasting in general, when I try to use it for particular applications, like copying the col vector to make a matrix, I get lost.
Can you help me understand or improve the readability of this code?
Upvotes: 2
Views: 3156
Reputation: 280251
Broadcasting always adds new dimensions to the left because it'd be ambiguous and bug-prone to try to guess when you want new dimensions on the right. You can make a function to broadcast to the right by reversing the axes, broadcasting, and reversing back:
def broadcast_rightward(arr, shape):
return np.broadcast_to(arr.T, shape[::-1]).T
Upvotes: 1
Reputation: 231335
https://en.wikipedia.org/wiki/Transpose - this article on Transpose talks only of transposing a matrix.
https://en.wikipedia.org/wiki/Row_and_column_vectors -
a column vector or column matrix is an m × 1 matrix a row vector or row matrix is a 1 × m matrix
You can easily create row or column vectors(matrix):
In [464]: np.array([[1],[2],[3]]) # column vector
Out[464]:
array([[1],
[2],
[3]])
In [465]: _.shape
Out[465]: (3, 1)
In [466]: np.array([[1,2,3]]) # row vector
Out[466]: array([[1, 2, 3]])
In [467]: _.shape
Out[467]: (1, 3)
But in numpy
the basic structure is an array
, not a vector or matrix.
[Array in Computer Science] - Generally, a collection of data items that can be selected by indices computed at run-time
A numpy
array can have 0 or more dimensions. In contrast in MATLAB matrix has 2 or more dimensions. Originally a 2d matrix was all that MATLAB had.
To talk meaningfully about a transpose you have to have at least 2 dimensions. One may have size one, and map onto a 1d vector, but it still a matrix, a 2d object.
So adding a dimension to a 1d array, whether done with reshape
or [:,None]
is NOT a hack. It is a perfect valid and normal numpy operation.
The basic broadcasting rules are:
a dimension of size 1 can be changed to match the corresponding dimension of the other array
a dimension of size 1 can be added automatically on the left (front) to match the number of dimensions.
In this example, both steps apply: (5,)=>(1,5)=>(3,5)
In [458]: np.broadcast_to(np.arange(5), (3,5))
Out[458]:
array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
In this, we have to explicitly add the size one dimension on the right (end):
In [459]: np.broadcast_to(np.arange(5)[:,None], (5,3))
Out[459]:
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4]])
np.broadcast_arrays(np.arange(5)[:,None], np.arange(3))
produces two (5,3) arrays.
np.broadcast_arrays(np.arange(5), np.arange(3)[:,None])
makes (3,5).
np.broadcast_arrays(np.arange(5), np.arange(3))
produces an error because it has no way of determining whether you want (5,3) or (3,5) or something else.
Upvotes: 2