Reputation: 494
Further to this discussion regarding fitting arima model using external regressors.
From Auto.arima to forecast in R
I was able to forecast perfectly for next 5 months given that I had future values for the predictors explaining my response variable (churn_rate).
arima_model_churn_rate <- auto.arima(tsm_churn_rate, stepwise = FALSE,
approximation = FALSE,
xreg = xreg_in_out_p_month_1)
number_of_future_month <- 5
forecast_churn_rate <- forecast (arima_model_churn_rate,
xreg = xreg_fut_in_out_p_month_churn_rate,
h = number_of_future_month)
plot(forecast_churn_rate)
My question is as I need to predict in future I can not wait for the predictors to be measured to make prediction for future months ?
If I have to wait till end of month then I can do simple calculation to see what is churn rate ?
My goal is predict for next 3 months in that case what I should I do get future values for my predictors?
I am kind of confused with this whole scenario as discussed in the blog. For arima model with external regressor we need future values. Its perfectly worked for example case where I just trained my model on 2 years data and I used next 5 months measurements for predictors as future value.
But what If I want to predict for future 3/6/ or even year and If I have to wait for future values then I am already in that time point. Then prediction does not make any sense.
Can someone explain this whole concept to me please. Sorry if I could not explain this whole scenario really well. I tried my level best to get around though.
Thanks in advance !!
Upvotes: 0
Views: 3485
Reputation: 31800
If you don't have values for your future predictors, then you need to either forecast them first, or use a different model.
You could try a model without those predictors, or you could include lagged values of the predictors where the lag is at least as long as the forecast horizon.
Upvotes: 2