Reputation: 701
I am looking for bokeh version (using vbar) of the following plot in matplotlib:
import pandas as pd
%matplotlib inline
data = [
['201720', 'cat1', 20],
['201720', 'cat2', 30],
['201720', 'cat3', 40],
['201721', 'cat1', 20],
['201721', 'cat2', 0],
['201721', 'cat3', 40],
['201722', 'cat1', 50],
['201722', 'cat2', 60],
['201722', 'cat3', 10],
]
df = pd.DataFrame(data, columns=['week', 'category', 'count'])
pt = df.pivot('week', 'category', 'count')
pt.plot(kind='bar', stacked=True)
I tried googling but I could not find a simple solution.
Upvotes: 0
Views: 3091
Reputation: 701
I think the following code is the best I can do as of now:
from bokeh.plotting import figure, output_file, show
from bokeh.models import ColumnDataSource
from bokeh.models.ranges import FactorRange
import pandas as pd
data = [
['201720', 'cat1', 20],
['201720', 'cat2', 30],
['201720', 'cat3', 40],
['201721', 'cat1', 20],
['201721', 'cat2', 0],
['201721', 'cat3', 40],
['201722', 'cat1', 50],
['201722', 'cat2', 60],
['201722', 'cat3', 10],
]
df = pd.DataFrame(data, columns=['week', 'category', 'count'])
pt = df.pivot('week', 'category', 'count')
pt = pt.cumsum(axis=1)
output_file("lines.html", title='Dashboard')
p = figure(title="count",
x_axis_label='week', y_axis_label='category',
x_range = FactorRange(factors=list(pt.index)),
plot_height=300, plot_width=500)
p.vbar(x=pt.index, bottom=0, top=pt.cat1, width=0.2, color='red', legend='cat1')
p.vbar(x=pt.index, bottom=pt.cat1, top=pt.cat2, width=0.2, color='blue', legend='cat2')
p.vbar(x=pt.index, bottom=pt.cat2, top=pt.cat3, width=0.2, color='green', legend='cat3')
show(p)
The resulting plot looks like:
Including vbar(), Bokeh plotting methods do not seem to support 'vectorized input' or maybe I am missing something. Is this really the simplest way?
Upvotes: 1