Reputation: 15000
I am trying to plot a time series from a python data frame. The code is below.
import requests
from bs4 import BeautifulSoup
import pandas as pd
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, YearLocator, MonthLocator
plt.style.use('ggplot')
def plot(df, filename, heading=None):
fig, ax = plt.subplots(figsize=(8, 4))
min_date = None
max_date = None
for col_name in df.columns.values:
# plot the column
col = df[col_name]
col = col[col.notnull()] # drop NAs
dates = [zzz.to_timestamp().date() for zzz in col.index]
ax.plot_date(x=dates, y=col, fmt='-', label=col_name,
tz=None, xdate=True, ydate=False, linewidth=1.5)
# establish the date range for the data
if min_date:
min_date = min(min_date, min(dates))
else:
min_date = min(dates)
if max_date:
max_date = max(max_date, max(dates))
else:
max_date = max(dates)
# give a bit of space at each end of the plot - aesthetics
span = max_date - min_date
extra = int(span.days * 0.03) * datetime.timedelta(days=1)
ax.set_xlim([min_date - extra, max_date + extra])
# format the x tick marks
ax.xaxis.set_major_formatter(DateFormatter('%Y'))
ax.xaxis.set_minor_formatter(DateFormatter('\n%b'))
ax.xaxis.set_major_locator(YearLocator())
ax.xaxis.set_minor_locator(MonthLocator(bymonthday=1, interval=2))
# grid, legend and yLabel
ax.grid(True)
ax.legend(loc='best', prop={'size':'x-small'})
ax.set_ylabel('Percent')
# heading
if heading:
fig.suptitle(heading, fontsize=12)
fig.tight_layout(pad=1.5)
# footnote
fig.text(0.99, 0.01, 'nse-timeseries-plot', ha='right',
va='bottom', fontsize=8, color='#999999')
# save to file
fig.savefig(filename, dpi=125)
url = "https://www.google.com/finance/historical?cid=207437&startdate=Jan%201%2C%201971&enddate=Jul%201%2C%202017&start={0}&num=30"
how_many_pages=138
start=0
for i in range(how_many_pages):
new_url = url.format(start)
page = requests.get(new_url)
soup = BeautifulSoup(page.content, "lxml")
table = soup.find_all('table', class_='gf-table historical_price')[0]
columns_header = [th.getText() for th in table.findAll('tr')[0].findAll('th')]
data_rows=table.findAll('tr')[1:]
data=[[td.getText() for td in data_rows[i].findAll(['td'])] for i in range(len(data_rows))]
if start == 0:
final_df = pd.DataFrame(data, columns=columns_header)
else:
df = pd.DataFrame(data, columns=columns_header)
final_df = pd.concat([final_df, df],axis=0)
start += 30
final_df.to_csv('nse_data.csv', sep='\t', encoding='utf-8')
plot(final_df,'nsetsplot')
When I run the code I get the error
AttributeError: 'numpy.int64' object has no attribute 'to_timestamp'
when I do
dates = [zzz.to_timestamp().date() for zzz in col.index]
I am using Anaconda 64-bit on Windows 7 (x86_64)
Upvotes: 2
Views: 14647
Reputation: 130
This may be due to a excel format issue if you imported your dataframe from excel. I had a similar problem: The dates appear fine in excel, but appear as integers (the integer representation of the date in excel) in the imported dataframe. This solved the problem for me: I select the whole column of dates in excel, and apply date format to the column. When I import as a dataframe after this, dates come out as dates.
Upvotes: 0
Reputation: 114911
Apparently the index of your DataFrame is not a pandas.PeriodIndex
. Instead, the index appears hold integers. The code that you posted requires the index of the data frame to be a PeriodIndex
. E.g.
In [36]: df
Out[36]:
a b
2012-01 1.457900 7.084201
2012-02 1.775861 6.448277
2012-03 1.069051 7.861898
In [37]: df.index
Out[37]: PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]', freq='M')
When the index is the correct type, the following code (similar to the line in the code you posted) works:
In [39]: dates = [zzz.to_timestamp().date() for zzz in df.index]
In [40]: dates
Out[40]:
[datetime.date(2012, 1, 1),
datetime.date(2012, 2, 1),
datetime.date(2012, 3, 1)]
Upvotes: 1