Reputation: 1525
I have a list with multiple levels that I would like to the data level into a data frame, where the variable chr is collapsed into single strings.
myList <- list(total_reach = list(4),
data = list(list(reach = 2,
chr = list("A", "B", "C"),
nr = 3,
company = "Company A"),
list(reach = 2,
chr = list("A", "B", "C"),
nr = 3,
company = "Company B")))
I would like to transform this into a data frame that looks like this:
reach chr nr company
1 2 A, B, C 3 Company A
2 2 A, B, C 3 Company B
Using dplyr and data.table I've come this far.
library(data.table)
library(dplyr)
df <- data.frame(rbindlist(myList[2])) %>% t() %>% as.data.frame()
colnames(df) <- names(myList$data[[1]])
rownames(df) <- c(1:nrow(df))
df$chr <- as.character(df$chr)
df <- df %>%
mutate_all(funs(unlist(.recursive = F, use.names = F)))
However, chr column contains strings with "list()" wrapped around it.
reach chr nr company
1 2 list("A", "B", "C") 3 Company A
2 2 list("A", "B", "C") 3 Company B
A) Is there a better way to unlist this kind of list and turn it into a data frame?
B) How do I collapse the lists in chr to strings or factors?
Upvotes: 2
Views: 4025
Reputation: 47310
I'm using rbind
to put everything together, then I reformat the chr
column with sapply
library(magrittr)
myList$data %>%
do.call(rbind,.) %>%
transform(chr %<>% sapply(paste,collapse=","))
# reach chr nr company
# 1 2 A,B,C 3 Company A
# 2 2 A,B,C 3 Company B
EDIT a few months later:
One line longer but a more idiomatic tidyverse
variation:
library(tidyverse)
myList$data %>%
map_df(as_tibble) %>%
group_by(reach,nr,company) %>%
summarize_at("chr",paste,collapse=",")
Upvotes: 1
Reputation: 42544
With data.table
you can try
library(data.table)
rbindlist(lapply(myList$data, as.data.table))[, .(chr = toString(chr)),
by = .(reach, nr, company)]
reach nr company chr 1: 2 3 Company A A, B, C 2: 2 3 Company B A, B, C
Note that there is a difference in using as.data.table
or as.data.frame
:
rbindlist(lapply(myList$data, as.data.table))
reach chr nr company 1: 2 A 3 Company A 2: 2 B 3 Company A 3: 2 C 3 Company A 4: 2 A 3 Company B 5: 2 B 3 Company B 6: 2 C 3 Company B
rbindlist(lapply(myList$data, as.data.frame))
reach chr..A. chr..B. chr..C. nr company 1: 2 A B C 3 Company A 2: 2 A B C 3 Company B
Alternatively, chr
can be manipulated before converting the list into a data.table:
rbindlist(lapply(myList$data, function(x) {
x$chr = toString(x$chr)
return(as.data.table(x))
}))
reach chr nr company 1: 2 A, B, C 3 Company A 2: 2 A, B, C 3 Company B
Upvotes: 4
Reputation: 887098
Here is an option using tidyverse
library(tidyverse)
myList[-1] %>%
map_df(transpose) %>%
mutate_at(vars(c('reach', 'nr', 'company')), funs(unlist))
Upvotes: 5