Reputation: 373
I'm working on titanic.csv
, and trying to make some plots. Running into one issue. How can I re-organize the x-axis to place the same pclass value next to each other.
my current code:
titanic.groupby(['Sex', 'Pclass'])['Survived'].mean().plot(kind='bar', color=my_colors)
I'd like to place the male and female from same class next to each other to show the difference in survival rate. Any suggestion?
Upvotes: 3
Views: 2533
Reputation: 11377
Altair can be very handy here. Here are 3 different one-liners to produce three different visualisations of this dataset.
import seaborn as sns
titanic = sns.load_dataset("titanic")
from altair import *
Chart(titanic).mark_bar().encode(x='pclass:O', y='mean(survived)', column='sex').configure_cell(width=200, height=200)
Chart(titanic).mark_bar().encode(x='sex:N', y='mean(survived):Q', column='pclass:O').configure_facet_cell(
strokeWidth=0.0).configure_cell(width=200, height=200)
Chart(titanic).mark_bar().encode(x='pclass:O', y='mean(survived):Q', color='sex:O').configure_cell(width=200, height=200)
Upvotes: 0
Reputation: 36695
Just change the order of columns in groupby:
import pandas as pd
import seaborn as sns
import matplotlib.pylab as plt
titanic = sns.load_dataset("titanic")
my_colors = ['r','g','b','k','y','magenta']
titanic.groupby(['pclass', 'sex'])['survived'].mean().plot(kind='bar', color=my_colors)
plt.show()
Or you can stack the bars:
titanic.groupby(['pclass', 'sex'])['survived'].mean().unstack('sex').plot(kind='bar', stacked=True)
Why you use mean
instead of count
?
Upvotes: 2