Reputation: 677
Consider this y(x) function:
where we can generate these scattered points in a file: dataset_1D.dat
:
# x y
0 0
1 1
2 0
3 -9
4 -32
The following is a 1D interpolation code for these points:
Load this scattered points
Create a x_mesh
Perform a 1D interpolation
Code:
import numpy as np
from scipy.interpolate import interp2d, interp1d, interpnd
import matplotlib.pyplot as plt
# Load the data:
x, y = np.loadtxt('./dataset_1D.dat', skiprows = 1).T
# Create the function Y_inter for interpolation:
Y_inter = interp1d(x,y)
# Create the x_mesh:
x_mesh = np.linspace(0, 4, num=10)
print x_mesh
# We calculate the y-interpolated of this x_mesh :
Y_interpolated = Y_inter(x_mesh)
print Y_interpolated
# plot:
plt.plot(x_mesh, Y_interpolated, "k+")
plt.plot(x, y, 'ro')
plt.legend(['Linear 1D interpolation', 'data'], loc='lower left', prop={'size':12})
plt.xlim(-0.1, 4.2)
plt.grid()
plt.ylabel('y')
plt.xlabel('x')
plt.show()
This plots the following:
Now, consider this z(x,y) function:
where we can generate these scattered points in a file: dataset_2D.dat
:
# x y z
0 0 0
1 1 0
2 2 -4
3 3 -18
4 4 -48
In this case we would have to perform a 2D interpolation:
import numpy as np
from scipy.interpolate import interp1d, interp2d, interpnd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Load the data:
x, y, z = np.loadtxt('./dataset_2D.dat', skiprows = 1).T
# Create the function Z_inter for interpolation:
Z_inter = interp2d(x, y, z)
# Create the x_mesh and y_mesh :
x_mesh = np.linspace(1.0, 4, num=10)
y_mesh = np.linspace(1.0, 4, num=10)
print x_mesh
print y_mesh
# We calculate the z-interpolated of this x_mesh and y_mesh :
Z_interpolated = Z_inter(x_mesh, y_mesh)
print Z_interpolated
print type(Z_interpolated)
print Z_interpolated.shape
# plot:
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x, y, z, c='r', marker='o')
plt.legend(['data'], loc='lower left', prop={'size':12})
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
This plots the following:
where the scattered data is shown again in red dots, to be consistent with the 2D plot.
I do not know how to interpret the Z_interpolated
result:
According to the printing lines for the above code,
Z_interpolated
is a n-dimensional numpy array, of shape (10,10). In other words, a 2D matrix with 10 rows and 10 columns.
I would have expected an interpolated z[i]
value for each value of x_mesh[i]
and y_mesh[i]
Why I do not receive this ?
Upvotes: 1
Views: 7689
Reputation: 339120
You would need two steps of interpolation. The first interpolates between y data. And the second interpolates between z data. You then plot the x_mesh
with the two interpolated arrays.
x_mesh = np.linspace(0, 4, num=16)
yinterp = np.interp(x_mesh, x, y)
zinterp = np.interp(x_mesh, x, z)
ax.scatter(x_mesh, yinterp, zinterp, c='k', marker='s')
In the complete example below I added some variation in y direction as well to make the solution more general.
u = u"""# x y z
0 0 0
1 3 0
2 9 -4
3 16 -18
4 32 -48"""
import io
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Load the data:
x, y, z = np.loadtxt(io.StringIO(u), skiprows = 1, unpack=True)
x_mesh = np.linspace(0, 4, num=16)
yinterp = np.interp(x_mesh, x, y)
zinterp = np.interp(x_mesh, x, z)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_mesh, yinterp, zinterp, c='k', marker='s')
ax.scatter(x, y, z, c='r', marker='o')
plt.legend(['data'], loc='lower left', prop={'size':12})
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
For using scipy.interpolate.interp1d
the solution is essentially the same:
u = u"""# x y z
0 0 0
1 3 0
2 9 -4
3 16 -18
4 32 -48"""
import io
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Load the data:
x, y, z = np.loadtxt(io.StringIO(u), skiprows = 1, unpack=True)
x_mesh = np.linspace(0, 4, num=16)
fy = interp1d(x, y, kind='cubic')
fz = interp1d(x, z, kind='cubic')
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_mesh, fy(x_mesh), fz(x_mesh), c='k', marker='s')
ax.scatter(x, y, z, c='r', marker='o')
plt.legend(['data'], loc='lower left', prop={'size':12})
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
Upvotes: 1
Reputation: 5722
Interpretation of Z_interpolated
: your 1-D x_mesh
and y_mesh
defines a mesh on which to interpolate. Your 2-D interpolation return z
is therefore a 2D array with shape (len(y), len(x)) which matches np.meshgrid(x_mesh, y_mesh)
. As you can see, your z[i, i], instead of z[i], is the expected value for x_mesh[i]
and y_mesh[i]
. And it just has a lot more, all values on the mesh.
A potential plot to show all interpolated data:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp2d
# Your original function
x = y = np.arange(0, 5, 0.1)
xx, yy = np.meshgrid(x, y)
zz = 2 * (xx ** 2) - (xx ** 3) - (yy ** 2)
# Your scattered points
x = y = np.arange(0, 5)
z = [0, 0, -4, -18, -48]
# Your interpolation
Z_inter = interp2d(x, y, z)
x_mesh = y_mesh = np.linspace(1.0, 4, num=10)
Z_interpolated = Z_inter(x_mesh, y_mesh)
fig = plt.figure()
ax = fig.gca(projection='3d')
# Plot your original function
ax.plot_surface(xx, yy, zz, color='b', alpha=0.5)
# Plot your initial scattered points
ax.scatter(x, y, z, color='r', marker='o')
# Plot your interpolation data
X_real_mesh, Y_real_mesh = np.meshgrid(x_mesh, y_mesh)
ax.scatter(X_real_mesh, Y_real_mesh, Z_interpolated, color='g', marker='^')
plt.show()
Upvotes: 1