Reputation: 379
I am trying to code the following algorithm for SuperTrend indicator in python using pandas.
BASIC UPPERBAND = (HIGH + LOW) / 2 + Multiplier * ATR
BASIC LOWERBAND = (HIGH + LOW) / 2 - Multiplier * ATR
FINAL UPPERBAND = IF( (Current BASICUPPERBAND < Previous FINAL UPPERBAND) or (Previous Close > Previous FINAL UPPERBAND))
THEN (Current BASIC UPPERBAND) ELSE Previous FINALUPPERBAND)
FINAL LOWERBAND = IF( (Current BASIC LOWERBAND > Previous FINAL LOWERBAND) or (Previous Close < Previous FINAL LOWERBAND))
THEN (Current BASIC LOWERBAND) ELSE Previous FINAL LOWERBAND)
SUPERTREND = IF((Previous SUPERTREND = Previous FINAL UPPERBAND) and (Current Close <= Current FINAL UPPERBAND)) THEN
Current FINAL UPPERBAND
ELSE
IF((Previous SUPERTREND = Previous FINAL UPPERBAND) and (Current Close > Current FINAL UPPERBAND)) THEN
Current FINAL LOWERBAND
ELSE
IF((Previous SUPERTREND = Previous FINAL LOWERBAND) and (Current Close >= Current FINAL LOWERBAND)) THEN
Current FINAL LOWERBAND
ELSE
IF((Previous SUPERTREND = Previous FINAL LOWERBAND) and (Current Close < Current FINAL LOWERBAND)) THEN
Current FINAL UPPERBAND
Here is the code that I wrote and tested:
# Compute basic upper and lower bands
df['basic_ub'] = (df['high'] + df['low']) / 2 + multiplier * df[atr]
df['basic_lb'] = (df['high'] + df['low']) / 2 - multiplier * df[atr]
# Compute final upper and lower bands
for i in range(0, len(df)):
if i < period:
df.set_value(i, 'basic_ub', 0.00)
df.set_value(i, 'basic_lb', 0.00)
df.set_value(i, 'final_ub', 0.00)
df.set_value(i, 'final_lb', 0.00)
else:
df.set_value(i, 'final_ub', (df.get_value(i, 'basic_ub')
if df.get_value(i, 'basic_ub') < df.get_value(i-1, 'final_ub') or df.get_value(i-1, 'close') > df.get_value(i-1, 'final_ub')
else df.get_value(i-1, 'final_ub')))
df.set_value(i, 'final_lb', (df.get_value(i, 'basic_lb')
if df.get_value(i, 'basic_lb') > df.get_value(i-1, 'final_lb') or df.get_value(i-1, 'close') < df.get_value(i-1, 'final_lb')
else df.get_value(i-1, 'final_lb')))
# Set the Supertrend value
for i in range(0, len(df)):
if i < period:
df.set_value(i, st, 0.00)
else:
df.set_value(i, 'st', (df.get_value(i, 'final_ub')
if ((df.get_value(i-1, 'st') == df.get_value(i-1, 'final_ub')) and (df.get_value(i, 'close') <= df.get_value(i, 'final_ub')))
else (df.get_value(i, 'final_lb')
if ((df.get_value(i-1, 'st') == df.get_value(i-1, 'final_ub')) and (df.get_value(i, 'close') > df.get_value(i, 'final_ub')))
else (df.get_value(i, 'final_lb')
if ((df.get_value(i-1, 'st') == df.get_value(i-1, 'final_lb')) and (df.get_value(i, 'close') >= df.get_value(i, 'final_lb')))
else (df.get_value(i, 'final_ub')
if((df.get_value(i-1, 'st') == df.get_value(i-1, 'final_lb')) and (df.get_value(i, 'close') < df.get_value(i, 'final_lb')))
else 0.00
)
)
)
)
)
# Mark the trend direction up/down
df['stx'] = np.where((df['st'] > 0.00), np.where((df['close'] < df['st']), 'down', 'up'), np.NaN)
I works, but I am not happy with the for loop. Can anyone help optimise it?
You can find the released code on Github!
Upvotes: 4
Views: 29950
Reputation: 2663
SuperTrend Indicator is included in pandas_ta
where you can simply:
import pandas_ta as ta
sti = ta.supertrend(df['High'], df['Low'], df['Close'], length=7, multiplier=3)
Given that df
is a pandas DataFrame with OHLC prices, the result sti
is a DataFrame with 4 columns:
where the trend is a concatenation of the long and short lines. Note that column captions are dynamic and contain the length and multiplier parameter values.
Upvotes: 8
Reputation: 31
Use this complete code
import numpy as np
import yfinance as yf
import pandas_datareader as pdr
import pandas as pd
data =yf.download("ACC.NS", period="1d",interval="5m")
data=data.reset_index(drop=True)
data['tr0'] = abs(data["High"] - data["Low"])
data['tr1'] = abs(data["High"] - data["Close"].shift(1))
data['tr2'] = abs(data["Low"]- data["Close"].shift(1))
data["TR"] = round(data[['tr0', 'tr1', 'tr2']].max(axis=1),2)
data["ATR"]=0.00
data['BUB']=0.00
data["BLB"]=0.00
data["FUB"]=0.00
data["FLB"]=0.00
data["ST"]=0.00
# Calculating ATR
for i, row in data.iterrows():
if i == 0:
data.loc[i,'ATR'] = 0.00#data['ATR'].iat[0]
else:
data.loc[i,'ATR'] = ((data.loc[i-1,'ATR'] * 13)+data.loc[i,'TR'])/14
data['BUB'] = round(((data["High"] + data["Low"]) / 2) + (2 * data["ATR"]),2)
data['BLB'] = round(((data["High"] + data["Low"]) / 2) - (2 * data["ATR"]),2)
# FINAL UPPERBAND = IF( (Current BASICUPPERBAND < Previous FINAL UPPERBAND) or (Previous Close > Previous FINAL UPPERBAND))
# THEN (Current BASIC UPPERBAND) ELSE Previous FINALUPPERBAND)
for i, row in data.iterrows():
if i==0:
data.loc[i,"FUB"]=0.00
else:
if (data.loc[i,"BUB"]<data.loc[i-1,"FUB"])|(data.loc[i-1,"Close"]>data.loc[i-1,"FUB"]):
data.loc[i,"FUB"]=data.loc[i,"BUB"]
else:
data.loc[i,"FUB"]=data.loc[i-1,"FUB"]
# FINAL LOWERBAND = IF( (Current BASIC LOWERBAND > Previous FINAL LOWERBAND) or (Previous Close < Previous FINAL LOWERBAND))
# THEN (Current BASIC LOWERBAND) ELSE Previous FINAL LOWERBAND)
for i, row in data.iterrows():
if i==0:
data.loc[i,"FLB"]=0.00
else:
if (data.loc[i,"BLB"]>data.loc[i-1,"FLB"])|(data.loc[i-1,"Close"]<data.loc[i-1,"FLB"]):
data.loc[i,"FLB"]=data.loc[i,"BLB"]
else:
data.loc[i,"FLB"]=data.loc[i-1,"FLB"]
# SUPERTREND = IF((Previous SUPERTREND = Previous FINAL UPPERBAND) and (Current Close <= Current FINAL UPPERBAND)) THEN
# Current FINAL UPPERBAND
# ELSE
# IF((Previous SUPERTREND = Previous FINAL UPPERBAND) and (Current Close > Current FINAL UPPERBAND)) THEN
# Current FINAL LOWERBAND
# ELSE
# IF((Previous SUPERTREND = Previous FINAL LOWERBAND) and (Current Close >= Current FINAL LOWERBAND)) THEN
# Current FINAL LOWERBAND
# ELSE
# IF((Previous SUPERTREND = Previous FINAL LOWERBAND) and (Current Close < Current FINAL LOWERBAND)) THEN
# Current FINAL UPPERBAND
for i, row in data.iterrows():
if i==0:
data.loc[i,"ST"]=0.00
elif (data.loc[i-1,"ST"]==data.loc[i-1,"FUB"]) & (data.loc[i,"Close"]<=data.loc[i,"FUB"]):
data.loc[i,"ST"]=data.loc[i,"FUB"]
elif (data.loc[i-1,"ST"]==data.loc[i-1,"FUB"])&(data.loc[i,"Close"]>data.loc[i,"FUB"]):
data.loc[i,"ST"]=data.loc[i,"FLB"]
elif (data.loc[i-1,"ST"]==data.loc[i-1,"FLB"])&(data.loc[i,"Close"]>=data.loc[i,"FLB"]):
data.loc[i,"ST"]=data.loc[i,"FLB"]
elif (data.loc[i-1,"ST"]==data.loc[i-1,"FLB"])&(data.loc[i,"Close"]<data.loc[i,"FLB"]):
data.loc[i,"ST"]=data.loc[i,"FUB"]
# Buy Sell Indicator
for i, row in data.iterrows():
if i==0:
data["ST_BUY_SELL"]="NA"
elif (data.loc[i,"ST"]<data.loc[i,"Close"]) :
data.loc[i,"ST_BUY_SELL"]="BUY"
else:
data.loc[i,"ST_BUY_SELL"]="SELL"
Upvotes: 3