Reputation: 517
I have a transition matrix :
a
A B C D E F G H I
A 0.00000000 0.66666667 0.0000000 0.000 0.0000000 0.00000000 0.00000000 0.33333333 0.0000000
B 0.08823529 0.02941176 0.2941176 0.000 0.2352941 0.05882353 0.02941176 0.11764706 0.1470588
C 0.00000000 0.37500000 0.0000000 0.000 0.4166667 0.00000000 0.00000000 0.08333333 0.1250000
D 0.00000000 0.00000000 0.3333333 0.000 0.0000000 0.00000000 0.33333333 0.33333333 0.0000000
E 0.00000000 0.50000000 0.2307692 0.000 0.0000000 0.00000000 0.00000000 0.07692308 0.1923077
F 0.00000000 0.00000000 0.0000000 0.000 0.5000000 0.00000000 0.00000000 0.00000000 0.5000000
G 0.00000000 0.50000000 0.0000000 0.500 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000
H 0.00000000 0.27272727 0.3636364 0.000 0.1818182 0.00000000 0.00000000 0.00000000 0.1818182
I 0.00000000 0.31250000 0.1875000 0.125 0.3125000 0.00000000 0.00000000 0.06250000 0.0000000
and i have in my dataset a categorical variable :
state=c("G" ,"I" ,"G", "C", "D", "I","A" ,"G", "G" ,"H", "C", "D" ,"C", "H" "F", "B", "F" ,"G" ,"D", "E" ,"B" ,"H" ,"E" ,"C" ,"F" ,"H", "C", "H" ,"F" ,"H")
and now i want to use my transition matrix to simulate a variable just like my variable state
using the Monte carlo approach.
Can you advise me which R package or function can help me to do my simulation please !
Upvotes: 1
Views: 356
Reputation: 16277
You could use markovchainSequence
from package markovchain
. Example:
mat <- as.matrix(read.table(text="
0.00000000 0.66666667 0.0000000 0.000 0.0000000 0.00000000 0.00000000 0.33333333 0.0000000
0.08823529 0.02941176 0.2941176 0.000 0.2352941 0.05882353 0.02941176 0.11764706 0.1470588
0.00000000 0.37500000 0.0000000 0.000 0.4166667 0.00000000 0.00000000 0.08333333 0.1250000
0.00000000 0.00000000 0.3333333 0.000 0.0000000 0.00000000 0.33333333 0.33333333 0.0000000
0.00000000 0.50000000 0.2307692 0.000 0.0000000 0.00000000 0.00000000 0.07692308 0.1923077
0.00000000 0.00000000 0.0000000 0.000 0.5000000 0.00000000 0.00000000 0.00000000 0.5000000
0.00000000 0.50000000 0.0000000 0.500 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000
0.00000000 0.27272727 0.3636364 0.000 0.1818182 0.00000000 0.00000000 0.00000000 0.1818182
0.00000000 0.31250000 0.1875000 0.125 0.3125000 0.00000000 0.00000000 0.06250000 0.000000",
header=FALSE,stringsAsFactors = FALSE))
rownames(mat) <- colnames(mat) <- LETTERS[1:9]
mat[,9] <- 1-rowSums(mat[,1:8]) #To make sure your rows sum to 1
statesNames <- LETTERS[1:9]
markovchain_object <- new("markovchain", states = statesNames, transitionMatrix = mat)
markovchainSequence(n=10, markovchain = markovchain_object)
[1] "C" "H" "C" "E" "C" "B" "C" "E" "B" "G"
Upvotes: 2