Bernard
Bernard

Reputation: 5666

How does the compiler define the classes in type_traits?

In C++11 and later, the <type_traits> header contains many classes for type checking, such as std::is_empty, std::is_polymorphic, std::is_trivially_constructible and many others.

While we use these classes just like normal classes, I cannot figure out any way to possibly write the definition of these classes. No amount of SFINAE (even with C++14/17 rules) or other method seems to be able to tell if a class is polymorphic, empty, or satisfy other properties. An class that is empty still occupies a positive amount of space as the class must have a unique address.

How then, might compilers define such classes in C++? Or perhaps it is necessary for the compiler to be intrinsically aware of these class names and parse them specially?

Upvotes: 1

Views: 189

Answers (1)

Pete Becker
Pete Becker

Reputation: 76245

Back in the olden days, when people were first fooling around with type traits, they wrote some really nasty template code in attempts to write portable code to detect certain properties. My take on this was that you had to put a drip-pan under your computer to catch the molten metal as the compiler overheated trying to compile this stuff. Steve Adamczyk, of Edison Design Group (provider of industrial-strength compiler frontends), had a more constructive take on the problem: instead of writing all this template code that takes enormous amounts of compiler time and often breaks them, ask me to provide a helper function.

When type traits were first formally introduced (in TR1, 2006), there were several traits that nobody knew how to implement portably. Since TR1 was supposed to be exclusively library additions, these couldn't count on compiler help, so their specifications allowed them to get an answer that was occasionally wrong, but they could be implemented in portable code.

Nowadays, those allowances have been removed; the library has to get the right answer. The compiler help for doing this isn't special knowledge of particular templates; it's a function call that tells you whether a particular class has a particular property. The compiler can recognize the name of the function, and provide an appropriate answer. This provides a lower-level toolkit that the traits templates can use, individually or in combination, to decide whether the class has the trait in question.

Upvotes: 2

Related Questions