Reputation: 433
How can we predict a model using random forest
? I want to train a model and finally predict a truth value using a random forest model in Python
of the three column dataset (click the link to download the full CSV
-dataset formatted as in the following
t_stamp,X,Y
0.000543,0,10
0.000575,0,10
0.041324,1,10
0.041331,2,10
0.041336,3,10
0.04134,4,10
0.041345,5,10
0.04135,6,10
0.041354,7,10
I wanted to predict the current value of Y
(the true value) using the last (for example: 5, 10, 100, 300, 1000, ..etc) data points of X
using random forest model
of sklearn
in Python
. Meaning taking [0,0,1,2,3]
of X
column as an input for the first window - i want to predict the 5th row value of Y
trained on the previous values of Y
. Similarly, using a simple rolling OLS regression model
, we can do it as in the following but I wanted to do it using random forest model
.
import pandas as pd
df = pd.read_csv('data_pred.csv')
model = pd.stats.ols.MovingOLS(y=df.Y, x=df[['X']],
window_type='rolling', window=5, intercept=True)
I have solved this problem with random forest
, which yields df
:
t_stamp X Y X_t1 X_t2 X_t3 X_t4 X_t5
0.000543 0 10 NaN NaN NaN NaN NaN
0.000575 0 10 0.0 NaN NaN NaN NaN
0.041324 1 10 0.0 0.0 NaN NaN NaN
0.041331 2 10 1.0 0.0 0.0 NaN NaN
0.041336 3 10 2.0 1.0 0.0 0.0 NaN
0.041340 4 10 3.0 2.0 1.0 0.0 0.0
0.041345 5 10 4.0 3.0 2.0 1.0 0.0
0.041350 6 10 5.0 4.0 3.0 2.0 1.0
0.041354 7 10 6.0 5.0 4.0 3.0 2.0
.........................................................
[ 10. 10. 10. 10. .................................]
MSE: 1.3273548431
This seems to work fine for ranges 5, 10, 15, 20, 22. However, it doesn't seem to work fine for ranges greater than 23 (it prints MSE: 0.0
) and this is because, as you can see from the dataset the values of Y
are fixed (10) from row 1 - 23 and then changes to another value (20, and so on) from row 24. How can we train and predict a model of such cases based on the last data points?
Upvotes: 0
Views: 2904
Reputation: 402942
It seems with the existing code, when calling dropna
, you truncate X
but not y
. You also train and test on the same data.
Fixing this will give non-zero MSE.
Code:
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
df = pd.read_csv('/Users/shivadeviah/Desktop/estimated_pred.csv')
df1 = pd.DataFrame({ 'X_%d'%i : df['X'].shift(i) for i in range(25)})
df1['Y'] = df['Y']
df1 = df1.sample(frac=1).reset_index(drop=True)
df1.dropna(inplace=True)
X = df1.iloc[:, :-1].values
y = df1.iloc[:, -1].values
x = int(len(X) * 0.66)
X_train = X[:x]
X_test = X[x:]
y_train = y[:x]
y_test = y[x:]
reg = RandomForestRegressor(criterion='mse')
reg.fit(X_train, y_train)
modelPred = reg.predict(X_test)
print(modelPred)
print("Number of predictions:",len(modelPred))
meanSquaredError = mean_squared_error(y_test, modelPred)
print("MSE:", meanSquaredError)
print(df1.size)
df2 = df1.iloc[x:, :].copy()
df2['pred'] = modelPred
df2.head()
Output:
[ 267.7 258.26608241 265.07037249 ..., 267.27370169 256.7 272.2 ]
Number of predictions: 87891
MSE: 1954.9271256
6721026
X_0 pred
170625 48 267.700000
170626 66 258.266082
170627 184 265.070372
170628 259 294.700000
170629 271 281.966667
Upvotes: 2