Reputation: 1097
I have this PySpark dataframe
+-----------+--------------------+
|uuid | test_123 |
+-----------+--------------------+
| 1 |[test, test2, test3]|
| 2 |[test4, test, test6]|
| 3 |[test6, test9, t55o]|
and I want to convert the column test_123
to be like this:
+-----------+--------------------+
|uuid | test_123 |
+-----------+--------------------+
| 1 |"test,test2,test3" |
| 2 |"test4,test,test6" |
| 3 |"test6,test9,t55o" |
so from list to be string.
how can I do it with PySpark?
Upvotes: 22
Views: 38213
Reputation: 151
As of version 2.4.0, you can use array_join
.Spark docs
from pyspark.sql.functions import array_join
df.withColumn("test_123", array_join("test_123", ",")).show()
Upvotes: 1
Reputation: 330063
While you can use a UserDefinedFunction
it is very inefficient. Instead it is better to use concat_ws
function:
from pyspark.sql.functions import concat_ws
df.withColumn("test_123", concat_ws(",", "test_123")).show()
+----+----------------+
|uuid| test_123|
+----+----------------+
| 1|test,test2,test3|
| 2|test4,test,test6|
| 3|test6,test9,t55o|
+----+----------------+
Upvotes: 40
Reputation: 214927
You can create a udf
that joins array/list and then apply it to the test column:
from pyspark.sql.functions import udf, col
join_udf = udf(lambda x: ",".join(x))
df.withColumn("test_123", join_udf(col("test_123"))).show()
+----+----------------+
|uuid| test_123|
+----+----------------+
| 1|test,test2,test3|
| 2|test4,test,test6|
| 3|test6,test9,t55o|
+----+----------------+
The initial data frame is created from:
from pyspark.sql.types import StructType, StructField
schema = StructType([StructField("uuid",IntegerType(),True),StructField("test_123",ArrayType(StringType(),True),True)])
rdd = sc.parallelize([[1, ["test","test2","test3"]], [2, ["test4","test","test6"]],[3,["test6","test9","t55o"]]])
df = spark.createDataFrame(rdd, schema)
df.show()
+----+--------------------+
|uuid| test_123|
+----+--------------------+
| 1|[test, test2, test3]|
| 2|[test4, test, test6]|
| 3|[test6, test9, t55o]|
+----+--------------------+
Upvotes: 13