Reputation: 2240
I have a dataframe of values that represent fold changes as such:
> df1 <- data.frame(A=c(1.74,-1.3,3.1), B=c(1.5,.9,.71), C=c(1.1,3.01,1.4))
A B C
1 1.74 1.50 1.10
2 -1.30 0.90 3.01
3 3.10 0.71 1.40
And a dataframe of pvalues as such that matches rows and columns identically:
> df2 <- data.frame(A=c(.02,.01,.8), B=c(NA,.01,.06), C=c(.01,.01,.03))
A B C
1 0.02 NA 0.01
2 0.01 0.01 0.01
3 0.80 0.06 0.03
What I want is to modify the values in df1 so that only retain the values that had a correponding pvalue in df2 < .05, and replace with NA otherwise. Note there are also NA in df2.
> desired <- data.frame(A=c(1.74,-1.3,NA), B=c(NA,.9,NA), C=c(1.1,3.01,1.4))
> desired
A B C
1 1.74 NA 1.10
2 -1.30 0.9 3.01
3 NA NA 1.40
I first tried to use vector syntax on these dataframes and that didn't work. Then I tried a for loop by columns and that also failed.
I don't think i understand how to index each i,j position and then replace df1 values with df2 values based on a logical.
Or if there is a better way in R.
Upvotes: 1
Views: 445
Reputation: 1433
ifelse
and as.matrix
seem to do the trick.
df1 <- data.frame(A=c(1.74,-1.3,3.1), B=c(1.5,.9,.71), C=c(1.1,3.01,1.4))
df2 <- data.frame(A=c(.02,.01,.8), B=c(NA,.01,.06), C=c(.01,.01,.03))
x1 <- as.matrix(df1)
x2 <- as.matrix(df2)
as.data.frame( ifelse( x2 >= 0.05 | is.na(x2), NA, x1) )
Result
A B C
1 1.74 NA 1.10
2 -1.30 0.9 3.01
3 NA NA 1.40
Upvotes: 1
Reputation: 37879
You can try this:
df1[!df2 < 0.05 | is.na(df2)] <- NA
Out:
> df1
A B C
1 1.74 NA 1.10
2 -1.30 0.9 3.01
3 NA NA 1.40
Upvotes: 4