Reputation: 9
I want to divide my supply dataframe by my population data frame to create a supply per capita data frame. Each data frame has an item column, a country column, and multiple year columns ( a column for each year's data). I need to match the Country and then divide each entry in the supply dataframe by the corresponding value in the population dataframe.
Any suggestions? I haven't been able to come up with anything.
Upvotes: 0
Views: 400
Reputation: 887128
We can use data.table
library(data.table)
i1 <- grep("year", names(df1))
i2 <- paste0("i.", i1)
setDT(df1)[df2, (i1) := Map(`/`, mget(i1), mget(i2)), on = .(country)]
df1
Upvotes: 1
Reputation: 25385
Maybe this can help you n the right direction:
# sample data
population = data.frame(country = c("A","B"),population = c(100,200))
data = data.frame(country=c("A","B"), y2016 = c(1000,2000), y2017=c(2000,3000))
library(dplyr)
# join the population and the data dataframe based on the 'country' column.
data =data %>% left_join(population)
# divide all columns except the columns 'country' and 'population' by the population column.
data[, colnames(data)[!colnames(data) %in% c("country","population")]] = data[, colnames(data)[!colnames(data) %in% c("country","population")]]/data$population
Input:
> population
country population
1 A 100
2 B 200
> data
country y2016 y2017
1 A 1000 2000
2 B 2000 3000
Output:
country y2016 y2017 population
1 A 10 20 100
2 B 10 15 200
Hope this helps!
Upvotes: 1