Reputation: 358
I have a dataframe from CSV file as follows,
TimeStamp
0 12/7/2017 8:00
1 12/7/2017 7:00
2 12/7/2017 6:00
3 12/7/2017 5:00
4 12/7/2017 4:00
5 12/7/2017 3:00
6 12/7/2017 2:00
7 12/7/2017 1:00
8 12/7/2017 0:00
9 11/7/2017 23:00
10 11/7/2017 22:00
...
9996 3/12/2015 6:00
9997 3/12/2015 5:00
9998 3/12/2015 4:00
9999 3/12/2015 3:00
Name: TimeStamp, Length: 10000, dtype: object
I am trying to use Pandas
to read the data from a specific date and time range for example, from 11/7/2017 8:00
to 12/7/2017 8:00
.
I have tried using Boolean mask
, DatetimeIndex
and .Between
methods and it read data out of that range and from 2016 and 2015 as well. Here are my codes,
import pandas as pd
eurusd = pd.read_csv('fxhistoricaldata_EURUSD_hour.csv')
eurusd = eurusd[(eurusd['TimeStamp'] >= '11/7/2017 8:00') &
(eurusd['TimeStamp'] <= '12/7/2017 8:00')]
print(eurusd['TimeStamp'])
or using .between,
eurusd = eurusd[eurusd['TimeStamp'].between('11/7/2017 8:00', '12/7/2017 8:00')]
The results are as such,
2 12/7/2017 6:00
3 12/7/2017 5:00
4 12/7/2017 4:00
5 12/7/2017 3:00
6 12/7/2017 2:00
7 12/7/2017 1:00
8 12/7/2017 0:00
23 11/7/2017 9:00
24 11/7/2017 8:00
513 12/6/2017 23:00
514 12/6/2017 22:00
515 12/6/2017 21:00
516 12/6/2017 20:00
517 12/6/2017 19:00
518 12/6/2017 18:00
519 12/6/2017 17:00
520 12/6/2017 16:00
521 12/6/2017 15:00
522 12/6/2017 14:00
523 12/6/2017 13:00
524 12/6/2017 12:00
525 12/6/2017 11:00
...
8827 12/2/2016 5:00
8828 12/2/2016 4:00
8829 12/2/2016 3:00
Name: TimeStamp, Length: 305, dtype: object
Can anyone help me rectify my problem or are there any function that can help me fulfill my task? Any help is greatly appreciated!
Upvotes: 3
Views: 4122
Reputation: 1811
You can do this with the datetime and dateutil libraries:
from dateutil import parser
from datetime import datetime
df['TimeStamp'] = df['TimeStamp'].apply(lambda x: parser.parse(x))
df[(df['TimeStamp'] < datetime(2017, 12, 7)) & (df['TimeStamp']> datetime(2015, 3, 12))] #or whichever dates you're looking for
Upvotes: 1
Reputation: 4009
You need to Ensure eurusd['TimeStamp']
is a series with dtype datetime64[ns]
:
eurusd['TimeStamp'] = pd.to_datetime(eurusd['TimeStamp'])
Create a boolean mask:
mask = (eurusd['TimeStamp'] > start_date) & (eurusd['TimeStamp'] <= end_date)
Now, Re-assign (or whatever you want to do with the output):
eurusd = eurusd.loc[mask]
Upvotes: 3