Reputation: 360
Let's start with the code. I have two structures, one for vectors, and other for matrices.
struct AVector
{
explicit AVector(float x=0.0f, float y=0.0f, float z=0.0f, float w=0.0f):
x(x), y(y), z(z), w(w) {}
AVector(const AVector& a):
x(a.x), y(a.y), z(a.z), w(a.w) {}
AVector& operator=(const AVector& a) {x=a.x; y=a.y; z=a.z; w=a.w; return *this;}
float x, y, z, w;
};
struct AMatrix
{
// Row-major
explicit AMatrix(const AVector& a=AVector(), const AVector& b=AVector(), const AVector& c=AVector(), const AVector& d=AVector())
{row[0]=a; row[1]=b; row[2]=c; row[3]=d;}
AMatrix(const AMatrix& m) {row[0]=m.row[0]; row[1]=m.row[1]; row[2]=m.row[2]; row[3]=m.row[3];}
AMatrix& operator=(const AMatrix& m) {row[0]=m.row[0]; row[1]=m.row[1]; row[2]=m.row[2]; row[3]=m.row[3]; return *this;}
AVector row[4];
};
Next, code performing calculations on those structures. Dot product using inlined ASM and SSE instructions:
inline AVector AVectorDot(const AVector& a, const AVector& b)
{
// XXX
/*const double v=a.x*b.x+a.y*b.y+a.z*b.z+a.w*b.w;
return AVector(v, v, v, v);*/
AVector c;
asm volatile(
"movups (%1), %%xmm0\n\t"
"movups (%2), %%xmm1\n\t"
"mulps %%xmm1, %%xmm0\n\t" // xmm0 -> (a1+b1, , , )
"movaps %%xmm0, %%xmm1\n\t" // xmm1 = xmm0
"shufps $0xB1, %%xmm1, %%xmm1\n\t" // 0xB1 = 10110001
"addps %%xmm1, %%xmm0\n\t" // xmm1 -> (x, y, z, w)+(y, x, w, z)=(x+y, x+y, z+w, z+w)
"movaps %%xmm0, %%xmm1\n\t" // xmm1 = xmm0
"shufps $0x0A, %%xmm1, %%xmm1\n\t" // 0x0A = 00001010
"addps %%xmm1, %%xmm0\n\t" // xmm1 -> (x+y+z+w, , , )
"movups %%xmm0, %0\n\t"
: "=m"(c)
: "r"(&a), "r"(&b)
);
return c;
}
Matrix transposition:
inline AMatrix AMatrixTranspose(const AMatrix& m)
{
AMatrix c(
AVector(m.row[0].x, m.row[1].x, m.row[2].x, m.row[3].x),
AVector(m.row[0].y, m.row[1].y, m.row[2].y, m.row[3].y),
AVector(m.row[0].z, m.row[1].z, m.row[2].z, m.row[3].z),
AVector(m.row[0].w, m.row[1].w, m.row[2].w, m.row[3].w));
// XXX
/*printf("AMcrix c:\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n",
c.row[0].x, c.row[0].y, c.row[0].z, c.row[0].w,
c.row[1].x, c.row[1].y, c.row[1].z, c.row[1].w,
c.row[2].x, c.row[2].y, c.row[2].z, c.row[2].w,
c.row[3].x, c.row[3].y, c.row[3].z, c.row[3].w);*/
return c;
}
Matrix-matrix multiplication - transpose first matrix, because when I have it stored as column major, and second one as row major, then I can perform multiplication using dot-products.
inline AMatrix AMatrixMultiply(const AMatrix& a, const AMatrix& b)
{
AMatrix c;
const AMatrix at=AMatrixTranspose(a);
// XXX
/*printf("AMatrix at:\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n",
at.row[0].x, at.row[0].y, at.row[0].z, at.row[0].w,
at.row[1].x, at.row[1].y, at.row[1].z, at.row[1].w,
at.row[2].x, at.row[2].y, at.row[2].z, at.row[2].w,
at.row[3].x, at.row[3].y, at.row[3].z, at.row[3].w);*/
for(int i=0; i<4; ++i)
{
c.row[i].x=AVectorDot(at.row[0], b.row[i]).w;
c.row[i].y=AVectorDot(at.row[1], b.row[i]).w;
c.row[i].z=AVectorDot(at.row[2], b.row[i]).w;
c.row[i].w=AVectorDot(at.row[3], b.row[i]).w;
}
return c;
}
Now time for main (pun intended) part:
int main(int argc, char *argv[])
{
AMatrix a(
AVector(0, 1, 0, 0),
AVector(1, 0, 0, 0),
AVector(0, 0, 0, 1),
AVector(0, 0, 1, 0)
);
AMatrix b(
AVector(1, 0, 0, 0),
AVector(0, 2, 0, 0),
AVector(0, 0, 3, 0),
AVector(0, 0, 0, 4)
);
AMatrix c=AMatrixMultiply(a, b);
printf("AMatrix c:\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n [%5.2f %5.2f %5.2f %5.2f]\n",
c.row[0].x, c.row[0].y, c.row[0].z, c.row[0].w,
c.row[1].x, c.row[1].y, c.row[1].z, c.row[1].w,
c.row[2].x, c.row[2].y, c.row[2].z, c.row[2].w,
c.row[3].x, c.row[3].y, c.row[3].z, c.row[3].w);
AVector v(1, 2, 3, 4);
AVector w(1, 1, 1, 1);
printf("Dot product: %f (1+2+3+4 = 10)\n", AVectorDot(v, w).w);
return 0;
}
In the above code I make two matrices, multiply them and print the resulting matrix. It works fine if I don't use any of the compiler optimizations (g++ main.cpp -O0 -msse). With optimizations enabled (g++ main.cpp -O1 -msse) resulting matrix is empty (all fields are zeroes). Uncommenting any block marked with XXX makes program write correct result.
It seems to me that GCC optimizes-out matrix at from AMatrixMultiply function, because it wrongly assumes it's not used in AVectorDot, which is written using SSE inlines.
Last few lines check if dot-product function really works, and yes, it does.
So, the question is: did I do or understand something wrong, or is this some kind of bug in GCC? My guess is 7:3 mix of above.
I'm using GCC version 5.1.0 (tdm-1).
Upvotes: 4
Views: 231
Reputation: 33717
Your inline assembly lacks some constraints:
asm volatile(
"movups (%1), %%xmm0\n\t"
"movups (%2), %%xmm1\n\t"
"mulps %%xmm1, %%xmm0\n\t" // xmm0 -> (a1+b1, , , )
"movaps %%xmm0, %%xmm1\n\t" // xmm1 = xmm0
"shufps $0xB1, %%xmm1, %%xmm1\n\t" // 0xB1 = 10110001
"addps %%xmm1, %%xmm0\n\t" // xmm1 -> (x, y, z, w)+(y, x, w, z)=(x+y, x+y, z+w, z+w)
"movaps %%xmm0, %%xmm1\n\t" // xmm1 = xmm0
"shufps $0x0A, %%xmm1, %%xmm1\n\t" // 0x0A = 00001010
"addps %%xmm1, %%xmm0\n\t" // xmm1 -> (x+y+z+w, , , )
"movups %%xmm0, %0\n\t"
: "=m"(c)
: "r"(&a), "r"(&b)
);
GCC does not know that this assembler fragment clobbers %xmm0
and %xmm1
, so it might not reload those registers to their previous values after the fragment has run. Some additional clobbers might be missing as well.
Upvotes: 4
Reputation: 22328
This is also a very inefficient way of multiplying matrices using SSE. I'd be surprised if it was much faster than a scalar implementation with so much floating-point throughput available on modern CPUs. A better method is outlined here, no explicit transpose needed:
AMatrix & operator *= (AMatrix & m0, const AMatrix & m1)
{
__m128 r0 = _mm_load_ps(& m1[0][x]);
__m128 r1 = _mm_load_ps(& m1[1][x]);
__m128 r2 = _mm_load_ps(& m1[2][x]);
__m128 r3 = _mm_load_ps(& m1[3][x]);
for (int i = 0; i < 4; i++)
{
__m128 ti = _mm_load_ps(& m0[i][x]), t0, t1, t2, t3;
t0 = _mm_shuffle_ps(ti, ti, _MM_SHUFFLE(0, 0, 0, 0));
t1 = _mm_shuffle_ps(ti, ti, _MM_SHUFFLE(1, 1, 1, 1));
t2 = _mm_shuffle_ps(ti, ti, _MM_SHUFFLE(2, 2, 2, 2));
t3 = _mm_shuffle_ps(ti, ti, _MM_SHUFFLE(3, 3, 3, 3));
ti = t0 * r0 + t1 * r1 + t2 * r2 + t3 * r3;
_mm_store_ps(& m0[i][x], ti);
}
return m0;
}
On modern compilers, like gcc and clang, t0 * r0 + t1 * r1 + t2 * r2 + t3 * r3
is actually operating on __m128
types; though you can replace these with _mm_mul_ps
and _mm_add_ps
intrinsics if you want.
Return by value is then just a matter of adding a function like:
inline AMatrix operator * (const AMatrix & m0, const AMatrix & m1)
{
AMatrix lhs (m0); return (lhs *= m1);
}
Personally, I'd just replace the float x, y, z, w;
with alignas (16) float _s[4] = {};
or similar - so you get a 'zero-vector' by default, or a defaulted constructor:
constexpr AVector () = default;
as well as nice constructors, like:
constexpr Vector (float x, float y, float z, float w)
: _s {x, y, z, w} {}
Upvotes: 6