Reputation: 1405
I am decomposing multiple time series using the seasonality decomposition offered by statsmodels
.Here is the code and the corresponding output:
def seasonal_decompose(item_index):
tmp = df2.loc[df2.item_id_copy == item_ids[item_index], "sales_quantity"]
res = sm.tsa.seasonal_decompose(tmp)
res.plot()
plt.show()
seasonal_decompose(100)
Can someone please tell me how I could plot multiple such plots in a row X column format to see how multiple time series are behaving?
Upvotes: 12
Views: 24164
Reputation: 339120
sm.tsa.seasonal_decompose
returns a DecomposeResult
. This has attributes observed
, trend
, seasonal
and resid
, which are pandas series. You may plot each of them using the pandas plot functionality. E.g.
res = sm.tsa.seasonal_decompose(someseries)
res.trend.plot()
This is essentially the same as the res.plot()
function would do for each of the four series, so you may write your own function that takes a DecomposeResult
and a list of four matplotlib axes as input and plots the four attributes to the four axes.
import matplotlib.pyplot as plt
import statsmodels.api as sm
dta = sm.datasets.co2.load_pandas().data
dta.co2.interpolate(inplace=True)
res = sm.tsa.seasonal_decompose(dta.co2)
def plotseasonal(res, axes ):
res.observed.plot(ax=axes[0], legend=False)
axes[0].set_ylabel('Observed')
res.trend.plot(ax=axes[1], legend=False)
axes[1].set_ylabel('Trend')
res.seasonal.plot(ax=axes[2], legend=False)
axes[2].set_ylabel('Seasonal')
res.resid.plot(ax=axes[3], legend=False)
axes[3].set_ylabel('Residual')
dta = sm.datasets.co2.load_pandas().data
dta.co2.interpolate(inplace=True)
res = sm.tsa.seasonal_decompose(dta.co2)
fig, axes = plt.subplots(ncols=3, nrows=4, sharex=True, figsize=(12,5))
plotseasonal(res, axes[:,0])
plotseasonal(res, axes[:,1])
plotseasonal(res, axes[:,2])
plt.tight_layout()
plt.show()
Upvotes: 21
Reputation: 7121
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
fig = plt.figure()
ax1 = fig.add_subplot(2,3,1)
ax1.scatter(x, y)
ax2 = fig.add_subplot(2,3,2)
ax2.scatter(x, y)
ax3 = fig.add_subplot(2,3,3)
ax3.scatter(x, y)
ax4 = fig.add_subplot(2,3,4)
ax4.scatter(x, y)
ax5 = fig.add_subplot(2,3,5)
ax5.scatter(x, y)
ax6 = fig.add_subplot(2,3,6)
ax6.scatter(x, y)
plt.show()
Upvotes: -1