Reputation: 21676
I have an excel which has 26 columns.
Date
, Unique ID
and H01
,H02
,H03
...H24
Here H{n} represents the hour, i.e. For UID some_code
at 19/7/2017 01.00.00
the value was 199
. At 19/7/2017 02.00.00
the value was 7
etc.
+--------------------+---------------+----------+---------------+
| Date | UID | H01 | H02 |
+--------------------+---------------+----------+---------------+
| 19/7/2017 00.00.00 | some_code | 199 | 7 |
| 19/7/2017 00.00.00 | another_code | 164 | 18 |
| 19/7/2017 00.00.00 | new_code | 209 | 1 |
| 19/7/2017 00.00.00 | code_5 | 85 | 4 |
| 19/7/2017 00.00.00 | what | 45 | 6 |
I'm reading the excel and creating a DataFrame which looks similar to above.
I want to modify this DataFrame such that I get below.
+--------------------+---------------+----------+
| Date | UID | Value |
+--------------------+---------------+----------+
| 19/7/2017 01.00.00 | some_code | 199 |
| 19/7/2017 02.00.00 | some_code | 7 |
| 19/7/2017 03.00.00 | some_code | ... |
.................................................
.................................................
| 19/7/2017 00.00.00 | some_code | ... |
| 19/7/2017 01.00.00 | another_code | 164 |
| 19/7/2017 02.00.00 | another_code | 18 |
| 19/7/2017 03.00.00 | another_code | ...|
.................................................
.................................................
| 19/7/2017 00.00.00 | another_code | ...|
I'm new to Python and Pandas, unable to get my head around stack/unstack/pivot.
Upvotes: 1
Views: 47
Reputation: 863166
You can use:
Date
to_datetime
MultiIndex
by set_index
- all another columns are H
columnsextract
numbers and convert to to_timedelta
stack
timedeltas
to dates and remove it by drop
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%Y %H.%M.%S')
df = df.set_index(['Date','UID'])
df.columns=pd.to_timedelta(df.columns.str.extract('(\d+)',expand=False).astype(int),unit='H')
df = df.stack().reset_index(name='Value')
df['Date'] = df['Date'] + df['level_2']
df = df.drop('level_2', axis=1)
print (df)
Date UID Value
0 2017-07-19 01:00:00 some_code 199
1 2017-07-19 02:00:00 some_code 7
2 2017-07-19 01:00:00 another_code 164
3 2017-07-19 02:00:00 another_code 18
4 2017-07-19 01:00:00 new_code 209
5 2017-07-19 02:00:00 new_code 1
6 2017-07-19 01:00:00 code_5 85
7 2017-07-19 02:00:00 code_5 4
8 2017-07-19 01:00:00 what 45
9 2017-07-19 02:00:00 what 6
For same format of dates add dt.strftime
:
...
df['Date'] = (df['Date'] + df['level_2']).dt.strftime('%d/%m/%Y %H.%M.%S')
df = df.drop('level_2', axis=1)
print (df)
Date UID Value
0 19/07/2017 01.00.00 some_code 199
1 19/07/2017 02.00.00 some_code 7
2 19/07/2017 01.00.00 another_code 164
3 19/07/2017 02.00.00 another_code 18
4 19/07/2017 01.00.00 new_code 209
5 19/07/2017 02.00.00 new_code 1
6 19/07/2017 01.00.00 code_5 85
7 19/07/2017 02.00.00 code_5 4
8 19/07/2017 01.00.00 what 45
9 19/07/2017 02.00.00 what 6
Upvotes: 1