Reputation: 13
I apologize for strange syntax, I am just now learning to program. I have a df of 100 columns and 5304 rows. I need to perform separate two sided ks.tests on 94 of those last numeric columns (6:ncol(df)) using the 5th numeric column or reference column:
r<-df$rank.
I'd also like to store the pvalues in a matrix. From what I understand, I can either use a 'for loop' or 'apply' functions. I have a simple code that only outputs a single stat summary (it seems like it is overwriting the results):
for (i in 6:ncol(df))
y<-df[,i]
ks.test(r,y)->K
> K
Two-sample Kolmogorov-Smirnov test
data: r and y
D = 0.71983, p-value < 2.2e-16
alternative hypothesis: two-sided
I've tried many variations of this as well as using lapply wrong. Any insight as to why "K" should not return multiple values or assigning the output to a matrix? Thank you.
edit: sample data set
probe set symbol zscore rank X1 X4 X13 X15 ....N (N=100)
22133-x_at SP110 4.73635 1 400 14 5 1000
. 2 5 430 56 150
. 3 24 78 23 9000
...N
(N=5304)
Upvotes: 1
Views: 2327
Reputation: 107747
Consider sapply
to return a matrix of ks.test
statistic and p.value:
# RANDOM DATA TO DEMONSTRATE
set.seed(147)
df <- data.frame(id1 = sample(LETTERS, 5304, replace=TRUE),
id2 = sample(LETTERS, 5304, replace=TRUE),
id3 = sample(LETTERS, 5304, replace=TRUE),
id4 = sample(LETTERS, 5304, replace=TRUE),
setNames(lapply(5:100, function(i) rnorm(5304)),
paste0("Col", 5:100)))
r <- df[,5]
res <- sapply(df[,6:100], function(y) {
ks <- ks.test(r, y)
c(statistic=ks$statistic, p.value=ks$p.value)
setNames(c(ks$statistic, ks$p.value), c("statistic", "p.value"))
})
# PRINT FIRST FIVE COLS
res[,1:5]
# Col6 Col7 Col8 Col9 Col10
# statistic 0.02111614 0.01338612 0.01074661 0.0224359 0.01677979
# p.value 0.18774138 0.72887906 0.91933648 0.1384762 0.44412866
Upvotes: 2