Reputation: 694
I am having a dataframe which has 4 columns and 4 rows. I need to reshape it into 2 columns and 4 rows. The 2 new columns are result of addition of values of col1 + col3 and col2 +col4. I do not wish to create any other memory object for it.
I am trying
df['A','B'] = df['A']+df['C'],df['B']+df['D']
Can it be achieved by using drop function only? Is there any other simpler method for this?
Upvotes: 1
Views: 882
Reputation:
The dynamic way of summing two columns at a time is to use groupby:
df.groupby(np.arange(len(df.columns)) % 2, axis=1).sum()
Out[11]:
0 1
0 2 4
1 10 12
2 18 20
3 26 28
You can use rename afterwards if you want to change column names but that would require a logic.
Upvotes: 3
Reputation: 294508
Consider the sample dataframe df
df = pd.DataFrame(np.arange(16).reshape(4, 4), columns=list('ABCD'))
df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
One line of code
pd.DataFrame(
df.values.reshape(4, 2, 2).transpose(0, 2, 1).sum(2),
columns=df.columns[:2]
)
A B
0 2 4
1 10 12
2 18 20
3 26 28
Another line of code
df.iloc[:, :2] + df.iloc[:, 2:4].values
A B
0 2 4
1 10 12
2 18 20
3 26 28
Yet another
df.assign(A=df.A + df.C, B=df.B + df.D).drop(['C', 'D'], 1)
A B
0 2 4
1 10 12
2 18 20
3 26 28
Upvotes: 0
Reputation: 3387
This works for me:
df['A'], df['B'] = df['A'] + df['C'], df['B'] + df['D']
df.drop(['C','D'], axis=1)
Upvotes: 0