Reputation: 885
I am learning about tf.contrib.learn in Tensorflow, and am using a self-made exercise. The exercise is to classify three regions as follows, with x1 and x2 as inputs, and the labels are triangles/circles/crosses:
My code is able to fit the data, and evaluate it. However, I cannot seem to get predictions to work. Code is below. Any ideas?
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tempfile
from six.moves import urllib
import pandas as pd
import tensorflow as tf
import numpy as np
FLAGS = None
myImportedDatax1_np = np.array([[.1],[.1],[.2],[.2],[.4],[.4],[.5],[.5],[.1],[.1],[.2],[.2]],dtype=float)
myImportedDatax2_np = np.array([[.1],[.2],[.1],[.2],[.1],[.2],[.1],[.2],[.4],[.5],[.4],[.5]],dtype=float)
combined_Imported_Data_x = np.append(myImportedDatax1_np, myImportedDatax2_np, axis=1)
myImportedDatay_np = np.array([[0],[0],[0],[0],[1],[1],[1],[1],[2],[2],[2],[2]],dtype=int)
def build_estimator(model_dir, model_type):
x1 = tf.contrib.layers.real_valued_column("x1")
x2 = tf.contrib.layers.real_valued_column("x2")
wide_columns = [x1, x2]
m = tf.contrib.learn.LinearClassifier(model_dir=model_dir, feature_columns=wide_columns)
return m
def input_fn(input_batch, output_batch):
inputs = {"x1": tf.constant(input_batch[:,0]), "x2": tf.constant(input_batch[:,1])}
label = tf.constant(output_batch)
print(inputs)
print(label)
print(input_batch)
# Returns the feature columns and the label.
return inputs, label
def train_and_eval(model_dir, model_type, train_steps, train_data, test_data):
model_dir = tempfile.mkdtemp() if not model_dir else model_dir
print("model directory = %s" % model_dir)
m = build_estimator(model_dir, model_type)
m.fit(input_fn=lambda: input_fn(combined_Imported_Data_x, myImportedDatay_np), steps=train_steps)
results = m.evaluate(input_fn=lambda: input_fn(np.array([[.4, .1],[.4, .2]], dtype=float), np.array([[0], [0]], dtype=int)), steps=1)
for key in sorted(results):
print("%s: %s" % (key, results[key]))
predictions = list(m.predict(input_fn=({"x1": tf.constant([[.1]]),"x2": tf.constant([[.1]])})))
# print(predictions)
def main(_):
train_and_eval(FLAGS.model_dir, FLAGS.model_type, FLAGS.train_steps,
FLAGS.train_data, FLAGS.test_data)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--model_dir",
type=str,
default="",
help="Base directory for output models."
)
parser.add_argument(
"--model_type",
type=str,
default="wide_n_deep",
help="Valid model types: {'wide', 'deep', 'wide_n_deep'}."
)
parser.add_argument(
"--train_steps",
type=int,
default=200,
help="Number of training steps."
)
parser.add_argument(
"--train_data",
type=str,
default="",
help="Path to the training data."
)
parser.add_argument(
"--test_data",
type=str,
default="",
help="Path to the test data."
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
Upvotes: 2
Views: 165
Reputation: 3307
To fix this concrete issue you can add the following input function which is similar to the existing one, except that it returns None as a second element in the tuple
def input_fn_predict():
inputs = {"x1": tf.constant([0.1]), "x2": tf.constant([0.2])}
print(inputs)
return inputs, None
In a next phase you can invoke it with:
predictions = list(m.predict(input_fn=lambda: input_fn_predict()))
And if you comment out your print, then this should work.
Upvotes: 1