Reputation: 33
I am trying to get a count between two timestamped values:
for example:
time letter
1 A
4 B
5 C
9 C
18 B
30 A
30 B
I am dividing time to time windows: 1+ 30 / 30 then I want to know how many A B C in each time window of size 1
timeseries A B C
1 1 0 0
2 0 0 0
...
30 1 1 0
this shoud give me a table of 30 rows and 3 columns: A B C of ocurancess
The problem is the data is taking to long to be break down because it iterates through all master table every time to slice the data eventhough thd data is already sorted
master = mytable
minimum = master.timestamp.min()
maximum = master.timestamp.max()
window = (minimum + maximum) / maximum
wstart = minimum
wend = minimum + window
concurrent_tasks = []
while ( wstart <= maximum ):
As = 0
Bs = 0
Cs = 0
for d, row in master.iterrows():
ttime = row.timestamp
if ((ttime >= wstart) & (ttime < wend)):
#print (row.channel)
if (row.channel == 'A'):
As = As + 1
elif (row.channel == 'B'):
Bs = Bs + 1
elif (row.channel == 'C'):
Cs = Cs + 1
concurrent_tasks.append([m_id, As, Bs, Cs])
wstart = wstart + window
wend = wend + window
Could you help me in making this perform better ? i want to use map function and i want to prevent python from looping through all the loop every time.
This is part of big data and it taking days to finish ?
thank you
Upvotes: 1
Views: 997
Reputation: 210852
There is a faster approach - pd.get_dummies():
In [116]: pd.get_dummies(df.set_index('time')['letter'])
Out[116]:
A B C
time
1 1 0 0
4 0 1 0
5 0 0 1
9 0 0 1
18 0 1 0
30 1 0 0
30 0 1 0
If you want to "compress" (group) it by time
:
In [146]: pd.get_dummies(df.set_index('time')['letter']).groupby(level=0).sum()
Out[146]:
A B C
time
1 1 0 0
4 0 1 0
5 0 0 1
9 0 0 1
18 0 1 0
30 1 1 0
or using sklearn.feature_extraction.text.CountVectorizer:
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(token_pattern=r"\b\w+\b", stop_words=None)
r = pd.SparseDataFrame(cv.fit_transform(df.groupby('time')['letter'].agg(' '.join)),
index=df['time'].unique(),
columns=df['letter'].unique(),
default_fill_value=0)
Result:
In [143]: r
Out[143]:
A B C
1 1 0 0
4 0 1 0
5 0 0 1
9 0 0 1
18 0 1 0
30 1 1 0
If we want to list all times
from 1
to 30
:
In [153]: r.reindex(np.arange(r.index.min(), r.index.max()+1)).fillna(0).astype(np.int8)
Out[153]:
A B C
1 1 0 0
2 0 0 0
3 0 0 0
4 0 1 0
5 0 0 1
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 1
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 0 0
17 0 0 0
18 0 1 0
19 0 0 0
20 0 0 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0
26 0 0 0
27 0 0 0
28 0 0 0
29 0 0 0
30 1 1 0
or using Pandas approach:
In [159]: pd.get_dummies(df.set_index('time')['letter']) \
...: .groupby(level=0) \
...: .sum() \
...: .reindex(np.arange(r.index.min(), r.index.max()+1), fill_value=0)
...:
Out[159]:
A B C
time
1 1 0 0
2 0 0 0
3 0 0 0
4 0 1 0
5 0 0 1
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 1
10 0 0 0
... .. .. ..
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0
26 0 0 0
27 0 0 0
28 0 0 0
29 0 0 0
30 1 1 0
[30 rows x 3 columns]
UPDATE:
Timing:
In [163]: df = pd.concat([df] * 10**4, ignore_index=True)
In [164]: %timeit pd.get_dummies(df.set_index('time')['letter'])
100 loops, best of 3: 10.9 ms per loop
In [165]: %timeit df.set_index('time').letter.str.get_dummies()
1 loop, best of 3: 914 ms per loop
Upvotes: 3