Reputation: 37
I have a dataframe 'tmp' on which I need to do perform calculation using the last row of another dataframe 'SpreadData'. I am using following code:
for(i in 1:ncol(tmp)){for(j in 1:nrow(tmp)){PNLData[j,i] = 10*tmp[j,i]*SpreadData[nrow(SpreadData),i]}}
Is there any faster method using mapply or something else so that I need not to use for loop.
Thanks
Upvotes: 1
Views: 47
Reputation: 11728
You can use sweep()
:
PNLData <- sweep(10 * tmp, 2, SpreadData[nrow(SpreadData), ], "*")
PS1: you can replace SpreadData[nrow(SpreadData), ]
by tail(SpreadData, 1)
.
PS2: I think this makes two copies of your data. If you have a large matrix, you'd better use Rcpp.
Edit: Rcpp solution: put that an .cpp file and source it.
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericMatrix rcppFun(const NumericMatrix& x,
const NumericVector& lastCol) {
int n = x.nrow();
int m = x.ncol();
NumericMatrix res(n, m);
int i, j;
for (j = 0; j < m; j++) {
for (i = 0; i < n; i++) {
res(i, j) = 10 * x(i, j) * lastCol[j];
}
}
return res;
}
And do in R PNLData <- rcppFun(tmp, SpreadData[nrow(SpreadData), ])
.
Upvotes: 1