Reputation: 18246
I want to store the results of time series (sensor data) into a HDF5 file. I cannot seem to be able to assign values to my dataset. Clearly, I am doing something wrong, I am just not sure what…
The code:
from datetime import datetime, timezone
import h5py
TIME_SERIES_FLOAT = np.dtype([("time", h5py.special_dtype(vlen=str)),
("value", np.float)])
h5 = h5py.File('balh.h5', "w")
dset = create_dataset('data', (1, 2), chunks=True, maxshape=(None, 2), dtype=TIME_SERIES_FLOAT)
dset[0]['time'] = datetime.now(timezone.utc).astimezone().isoformat()
dset[0]['value'] = 0.0
Then the update code resizes the dataset and adds more values. Clearly doing that per value is inefficient:
size = list(dset.shape)
size[0] += 1
dset.resize(tuple(size))
dset[size[0]-1]['time'] = datetime.now(timezone.utc).astimezone().isoformat()
dset[size[0]-1]['value'] = value
A much better method would be to collate some data into an np.array
and then add that every so often…
Is this sensible?…
Upvotes: 1
Views: 1909
Reputation: 18246
I need more coffee…
The defined type is a tuple containing a string (aka the time) and a float (aka the value) so to add one, I need:
dset[-1] = (datetime.now(timezone.utc).astimezone().isoformat(), value)
It is actually that simple!
Adding many entries is done this way:
l = [('stamp', x) for x in range(10)]
size = list(dset.shape)
tmp = size[0]
size[0] += len(l)
dset.resize(tuple(size))
for x in range(len(l)):
dset[tmp+x] = l[x]
Nonetheless, this feels somewhat clunky and sub-optimal…
Upvotes: 1