Reputation: 1271
I'm trying to describe a type system of a programming language. It has a common subtype for any types (VoidType) and a common supertype for any types (AnyType):
datatype type =
VoidType |
AnyType |
BooleanType |
EBooleanType |
RealType |
IntegerType |
UnlimNatType |
StringType
fun subtype_strict_fun :: "type ⇒ type ⇒ bool" (infix "<:sf" 55) where
"_ <:sf VoidType = False"
| "VoidType <:sf _ = True"
| "AnyType <:sf _ = False"
| "_ <:sf AnyType = True"
| "BooleanType <:sf EBooleanType = True"
| "IntegerType <:sf RealType = True"
| "UnlimNatType <:sf IntegerType = True"
| "UnlimNatType <:sf RealType = True"
| "_ <:sf _ = False"
definition subtype_fun :: "type ⇒ type ⇒ bool" (infix "<:f" 55) where
"x <:f y ≡ x = y ∨ x <:sf y"
I'm trying to instantinate type
as ccpo
:
instantiation type :: ccpo
begin
definition "less_eq = subtype_fun"
definition "less = subtype_strict_fun"
lemma subtype_strict_eq_subtype:
"(x <:sf y) = (x <:f y ∧ ¬ y <:f x)"
by (cases x; cases y; simp add: subtype_fun_def)
lemma subtype_refl:
"x <:f x"
by (simp add: subtype_fun_def)
lemma subtype_trans:
"x <:f y ⟹ y <:f z ⟹ x <:f z"
by (cases x; cases y; cases z; simp add: subtype_fun_def)
lemma subtype_antisym:
"x <:f y ⟹ y <:f x ⟹ x = y"
by (cases x; cases y; simp add: subtype_fun_def)
instance
apply intro_classes
apply (simp add: less_eq_type_def less_type_def subtype_strict_eq_subtype)
apply (simp add: less_eq_type_def less_type_def subtype_refl)
apply (metis less_eq_type_def subtype_trans)
apply (metis less_eq_type_def subtype_antisym)
end
Could you suggest how to define a supremum function Sup :: OCL.type set ⇒ OCL.type
?
Upvotes: 0
Views: 147
Reputation: 5078
The type OCL.type
is finite, so all sets of type OCL.type set
are finite, too. Moreover, there is also a top element in your hierarchy. Therefore, you can define the Sup
operation simply by folding sup
over the given set. The locale comm_monoid_set
provides the necessary infrastructure. First, instantiate the type classes semilattice_sup
and order_top
. Then interpret comm_monoid_set
:
interpretation ocl': abel_semigroup sup "top :: OCL.type" <proof>
interpretation ocl: comm_monoid_set sup "top :: OCL.type" <proof>
This generates the folded sup
operation over sets under the name ocl.F
. So,
definition "Sup_ocl = ocl.F id"
gives you a definition for the Sup
operation. This is a general construction that works for any finite upper semilattice with a top element. But it will not give you any dedicated setup for reasoning about the OCL.type
hierarchy in particular. You'll have to derive appropriate rules yourself.
Upvotes: 1