Reputation: 1536
I want to create a circular median filter with a given radius, rather than a square filter from an array. Here's my attempt so far:
# Apply median filter to each image
import matplotlib.pyplot as plt
radius = 25
disk_filter = plt.fspecial('disk', radius)
w1_median_disk = plt.imfilter(w1data, disk_filter, 'replicate')
w2_median_disk = plt.imfilter(w2data, disk_filter, 'replicate')
w1data
and w2data
are the 2-d numpy arrays I'm trying to apply the filter to. The fspecial
module is from Matlab, but I want to use it (or something equivalent) in my Python code. Any ideas?
I get the error message "
disk_filter = plt.fspecial('disk', radius)
AttributeError: 'module' object has no attribute 'fspecial'"
I'm wondering if there's either a module I can import that contains fspecial, or an equivalent command in Python.
Upvotes: 1
Views: 4737
Reputation: 1979
If you are willing to install/use an additional package I strongly recommend the amazing skimage for any kind of image processing in Python! Filtering with a disk-like filter is just two lines of code:
import skimage
import skimage.data
import skimage.morphology
import skimage.filters
# load example image
original = skimage.data.camera()
# create disk-like filter footprint with given radius
radius = 10
circle = skimage.morphology.disk(radius)
# apply median filter with given footprint = structuring element = selem
filtered = skimage.filters.median(original, selem = circle)
Upvotes: 2
Reputation: 1536
Here's something I found that seems to do the job:
from scipy.ndimage.filters import generic_filter as gf
# Define physical shape of filter mask
def circular_filter(image_data, radius):
kernel = np.zeros((2*radius+1, 2*radius+1))
y, x = np.ogrid[-radius:radius+1, -radius:radius+1]
mask = x**2 + y**2 <= radius**2
kernel[mask] = 1
filtered_image = gf(image_data, np.median, footprint = kernel)
return filtered_image
But I'm not sure I understand perfectly what's going on. In particular, what exactly do the lines
y, x = np.ogrid[-radius:radius+1, -radius:radius+1]
mask = x**2 + y**2 <= radius**2
kernel[mask] = 1
do?
Upvotes: 1
Reputation: 3706
scrape 'cameraman' image from:
https://www.mathworks.com/help/images/ref/fspecial.html
import numpy as np
import matplotlib.pyplot as plt
import os
from scipy import misc
path = 'D:/My Pictures/cameraman.bmp'
cameraman = misc.imread(path, flatten=0)
cameraman = np.average(cameraman, axis=2)
r = 10
y,x = np.ogrid[-r: r+1, -r: r+1]
disk = x**2+y**2 <= r**2
disk = disk.astype(float)
from scipy import signal
blur = signal.convolve2d(cameraman, disk, mode='full', boundary='fill', fillvalue=0)
import matplotlib
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.imshow(cameraman, cmap = matplotlib.cm.Greys_r)
ax1.set_title('cameraman')
ax2.imshow(blur, cmap = matplotlib.cm.Greys_r)
ax2.set_title('signal.convolve2d(cameraman, disk..')
or you may want to use scipy.ndimage.filters.convolve for its 'reflect' edge treatment
from scipy.ndimage.filters import convolve
blur = convolve(cameraman, disk)
Upvotes: 1