Reputation: 115
I am trying to create a new column based on the multiple conditions shown in my code. I have a dictionary for jp_hol which has the holidays in japan and my dataframe has the that date column which is a string, and all other columns used in the function I however get this error below could someone help me figure out the problem
The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
my code:
def flag():
if (load['date'].isin([i for i in jp_hol.keys()]) |(load['day_of_week_int']==6)):
l='holiday'
elif load['day_of_week_int'].isin([i for i in range(0,5)]):
l='weekday'
elif load['day_of_week_int']==5:
l='sat'
return l
load['flag']=load.apply(flag(),axis=1
Note: if the holiday falls in a weekday then the holiday should take precedence over weekday.
Upvotes: 2
Views: 5017
Reputation: 862406
All mask create True
and False
Series, so is possible use numpy.where
:
m1 = load['date'].isin([i for i in jp_hol.keys()]) | (load['day_of_week_int']==6)
m2 = load['day_of_week_int'].isin([i for i in range(0,5)])
m3 = load['day_of_week_int']==5
load['flag']=np.where(m1, 'holiday',
np.where(m2, 'weekday',
np.where(m3, 'sate', 'no match')))
Sample:
load = pd.DataFrame({'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')})
print (load)
m1 = load['B'] == 5
m2 = load['C'] >5
m3 = load['F'] == 'a'
print (pd.concat([m1,m2,m3], axis=1))
B C F
0 False True True
1 True True True
2 False True True
3 True False False
4 True False False
5 False False False
load['flag']=np.where(m1, 'holiday',
np.where(m2, 'weekday',
np.where(m3, 'sate', 'no match')))
print (load)
A B C D E F flag
0 a 4 7 1 5 a weekday
1 b 5 8 3 3 a holiday
2 c 4 9 5 6 a weekday
3 d 5 4 7 9 b holiday
4 e 5 2 1 2 b holiday
5 f 4 3 0 4 b no match
Upvotes: 2