Reputation: 1287
I have three features:
feature_one -> number of tokens in the given sentence.
feature_two -> number of verbs in the given sentence.
feature_three -> number of tokens - number of verbs in the given sentence.
(feature_one - feature_two)
I have written custom transformers for feature_one
and feature_two
and want to written custom transformer for feature_three
such that I can use result of feature_one
and feature_two
by running pipeline as:
Pipeline([
#input to feature_one and feature_two is list of sentences.
("feature", FeatureUnion([
("feature_one", feature_one_transformer()),
("feature_two", feature_two_transformer())
])),
("feature_three", feature_three_transformer())
])
feature_one_transformer:
class feature_one_transformer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y):
return self
def transform(self, sentence_list):
number_of_tokens_in_sentence_list = list()
for sentence in sentence_list:
number_of_tokens = compute_number_of_tokens
number_of_tokens_in_sentence_lista.append(number_of_tokens)
return pandas.DataFrame(number_of_tokens_in_sentence_list)
feature_two_transformer:
class feature_two_transformer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y):
return self
def transform(self, sentence_list):
number_of_verbs_in_sentence_list = list()
for sentence in sentence_list:
number_of_verbs = compute_number_of_verbs_in_sentence
number_of_verbs_in_sentence_lista.append(number_of_verbs)
return pandas.DataFrame(number_of_verbs_in_sentence_list)
Can somebody tell me how should I write custom transformer for feature_three and how to use in pipeline so that I can use result of feature_one and feature_two transformers. Thank you.
Upvotes: 0
Views: 814
Reputation: 2826
It's not clear to me why you would want to make this so complicated. I would just use one transformer that does everything you want. Something like this:
class features_transformer(BaseEstimator, TransformerMixin):
def __init__(self, variable):
self.variable = variable
def fit(self, X):
return self
def transform(self, X):
X['number_of_tokens'] = X[self.variable].apply(lambda cell: compute_number_of_tokens(cell))
X['number_of_verbs'] = X[self.variable].apply(lambda cell: compute_number_of_verbs(cell))
X['tokens_minus_verbs'] = X['number_of_tokens'] - X['number_of_verbs']
return X
new_X = features_transformer('sentences').fit_transform(X)
Upvotes: 1