Reputation: 689
I am trying to find outliers for work schedules for individuals (mostly high variations). trying to find, if someone comes or leaves way outside the individual (8:30am to 5pm) or group normals (7am to 6pm). I tried using standard deviation but the problem with that is,
Is there any known way to find outliers in work schedule? I tried to search but all I get is outliers in time-series. But I am looking for outliers in time itself. Any suggestions?
Note: My data set has PersonID and multiple (swipe) times/day/PersonID. And I am using python 2.7.
Upvotes: 1
Views: 218
Reputation: 663
If I understand correctly, you are looking to identify people who depart extremely early or arrive extremely late compared to their own and overall norms.
Also, I would suggest looking at the daily hours - difference between arrival and departure each day as a separate metric.
Below I have a directional approach / suggestion to tackle your problem, python3 (sorry).
It should address the issues you mentioned but does not add the daily hours I think you should include.
This is the output you can expect:
Outlier PersonIDs based on overall data
array([ 1., 4., 7., 8.])
Outlier PersonIDs based on each user's data and overall deviation
array([ 1., 3., 4., 5., 7., 8., 9.])
This is the daily arrival and departure time distributions:
Here's the code:
#! /usr/bin/python3
import random
import pandas as pd
import numpy as np
import scipy.stats
import pprint
pp = pprint.PrettyPrinter(indent=4)
# Visualize:
import matplotlib.pyplot as plt
#### Create Sample Data START
# Parameters:
TimeInExpected=8.5 # 8:30am
TimeOutExpected=17 # 5pm
sig=1 # 1 hour variance
Persons=11
# Increasing the ratio between sample size and persons will make more people outliers.
SampleSize=20
Accuracy=1 # Each hour is segmented by hour tenth (6 minutes)
# Generate sample
SampleDF=pd.DataFrame([
np.random.randint(1,Persons,size=(SampleSize)),
np.around(np.random.normal(TimeInExpected, sig,size=(SampleSize)),Accuracy),
np.around(np.random.normal(TimeOutExpected, sig,size=(SampleSize)),Accuracy)
]).T
SampleDF.columns = ['PersonID', 'TimeIn','TimeOut']
# Visualize
plt.hist(SampleDF['TimeIn'],rwidth=0.5,range=(0,24))
plt.hist(SampleDF['TimeOut'],rwidth=0.5,range=(0,24))
plt.xticks(np.arange(0,24, 1.0))
plt.xlabel('Hour of day')
plt.ylabel('Arrival / Departure Time Frequency')
plt.show()
#### Create Sample Data END
#### Analyze data
# Threshold distribution percentile
OutlierSensitivity=0.05 # Will catch extreme events that happen 5% of the time. - one sided! i.e. only late arrivals and early departures.
presetPercentile=scipy.stats.norm.ppf(1-OutlierSensitivity)
# Distribution feature and threshold percentile
argdictOverall={
"ExpIn":SampleDF['TimeIn'].mode().mean().round(1)
,"ExpOut":SampleDF['TimeOut'].mode().mean().round(1)
,"sigIn":SampleDF['TimeIn'].var()
,"sigOut":SampleDF['TimeOut'].var()
,"percentile":presetPercentile
}
OutlierIn=argdictOverall['ExpIn']+argdictOverall['percentile']*argdictOverall['sigIn']
OutlierOut=argdictOverall['ExpOut']-argdictOverall['percentile']*argdictOverall['sigOut']
# Overall
# See all users with outliers - overall
Outliers=SampleDF["PersonID"].loc[(SampleDF['TimeIn']>OutlierIn) | (SampleDF['TimeOut']<OutlierOut)]
# See all observations with outliers - Overall
# pp.pprint(SampleDF.loc[(SampleDF['TimeIn']>OutlierIn) | (SampleDF['TimeOut']<OutlierOut)].sort_values(["PersonID"]))
# Sort and remove NAs
Outliers=np.sort(np.unique(Outliers))
# Show users with overall outliers:
print("Outlier PersonIDs based on overall data")
pp.pprint(Outliers)
# For each
OutliersForEach=[]
for Person in SampleDF['PersonID'].unique():
# Person specific dataset
SampleDFCurrent=SampleDF.loc[SampleDF['PersonID']==Person]
# Distribution feature and threshold percentile
argdictCurrent={
"ExpIn":SampleDFCurrent['TimeIn'].mode().mean().round(1)
,"ExpOut":SampleDFCurrent['TimeOut'].mode().mean().round(1)
,"sigIn":SampleDFCurrent['TimeIn'].var()
,"sigOut":SampleDFCurrent['TimeOut'].var()
,"percentile":presetPercentile
}
OutlierIn=argdictCurrent['ExpIn']+argdictCurrent['percentile']*argdictCurrent['sigIn']
OutlierOut=argdictCurrent['ExpOut']-argdictCurrent['percentile']*argdictCurrent['sigOut']
if SampleDFCurrent['TimeIn'].max()>OutlierIn or SampleDFCurrent['TimeOut'].min()<OutlierOut:
Outliers=np.append(Outliers,Person)
# Sort and get unique values
Outliers=np.sort(np.unique(Outliers))
# Show users with overall outliers:
print("Outlier PersonIDs based on each user's data and overall deviation")
pp.pprint(Outliers)
Upvotes: 1