Reputation: 874
What I have:
df = pd.DataFrame({'SERIES1':['A','A','A','A','A','A','B','B','B','B','B','B','B','B','C','C','C','C','C'],
'SERIES2':[1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1],
'SERIES3':[10,12,20,10,12,4,8,8,1,10,12,12,13,13,9,8,7,7,7]})
SERIES1 SERIES2 SERIES3
0 A 1 10
1 A 1 12
2 A 1 20
3 A 1 10
4 A 2 12
5 A 2 4
6 B 1 8
7 B 1 8
8 B 1 1
9 B 1 10
10 B 1 12
11 B 1 12
12 B 1 13
13 B 1 13
14 C 1 9
15 C 1 8
16 C 1 7
17 C 1 7
18 C 1 7
What I need is to group by SERIES1 and SERIES2 and to convert the values in SERIES3 to the minimum of that group. i.e.:
df2 = pd.DataFrame({'SERIES1':['A','A','A','A','A','A','B','B','B','B','B','B','B','B','C','C','C','C','C'],
'SERIES2':[1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1],
'SERIES3':[10,10,10,10,4,4,1,1,1,1,1,1,1,1,7,7,7,7,7]})
SERIES1 SERIES2 SERIES3
0 A 1 10
1 A 1 10
2 A 1 10
3 A 1 10
4 A 2 4
5 A 2 4
6 B 1 1
7 B 1 1
8 B 1 1
9 B 1 1
10 B 1 1
11 B 1 1
12 B 1 1
13 B 1 1
14 C 1 7
15 C 1 7
16 C 1 7
17 C 1 7
18 C 1 7
I have a feeling this can be done with .groupby(), but I'm not sure how to replace it in the existing DataFrame, or to add it as new series.
I'm able to get:
df.groupby(['SERIES1', 'SERIES2']).min()
SERIES3
SERIES1 SERIES2
A 1 10
2 4
B 1 1
C 1 7
which are the correct minimums per group, but I cant figure out a simple way to pop that back into the original dataframe.
Upvotes: 0
Views: 654
Reputation: 214957
You can use groupby.transform
, which gives back a same length series that you can assign back to the data frame:
df['SERIES3'] = df.groupby(['SERIES1', 'SERIES2']).SERIES3.transform('min')
df
Upvotes: 1