Reputation: 1280
Suppose I have a DataFrame with some NaN -
import pandas as pd
l = [{'C1':-6,'C3':2},
{'C2':-6,'C3':3},
{'C1':-6.3,'C2':8,'C3':9},
{'C2':-7}]
df1 = pd.DataFrame(l,
index=['R1','R2','R3','R4'])
print(df1)
C1 C2 C3
R1 -6.0 NaN 2.0
R2 NaN -6.0 3.0
R3 -6.3 8.0 9.0
R4 NaN -7.0 NaN
Problem - If there is any NaN value in any row cell then it has to be replaced by the aggregate of non-null values from the same row. For instance, in first row, the value of (R1,C2) should be = (-6+2)/2 = -2
Expected output -
C1 C2 C3
R1 -6.0 -4.0 2.0
R2 -1.5 -6.0 3.0
R3 -6.3 8.0 9.0
R4 -7.0 -7.0 -7.0
Upvotes: 1
Views: 567
Reputation: 1258
You could do this. Transpose, then do fillna()
then again transpose it.
>>> df1 = df1.T.fillna(df1.mean(axis=1)).T
>>> print(df1)
C1 C2 C3
R1 -6.0 -4.0 2.0
R2 -1.5 -6.0 3.0
R3 -6.3 8.0 9.0
R4 -7.0 -7.0 -7.0
Upvotes: 0
Reputation: 863301
Use apply
with axis=1
for process by rows:
df1 = df1.apply(lambda x: x.fillna(x.mean()), axis=1)
print(df1)
C1 C2 C3
R1 -6.0 -2.0 2.0
R2 -1.5 -6.0 3.0
R3 -6.3 8.0 9.0
R4 -7.0 -7.0 -7.0
Also works:
df1 = df1.T.fillna(df1.mean(1)).T
print(df1)
C1 C2 C3
R1 -6.0 -2.0 2.0
R2 -1.5 -6.0 3.0
R3 -6.3 8.0 9.0
R4 -7.0 -7.0 -7.0
Because:
df1 = df1.fillna(df1.mean(1), axis=1)
print(df1)
NotImplementedError: Currently only can fill with dict/Series column by column
Upvotes: 3