Reputation: 13
I have a Python dataframe that contains a list of dictionaries (for certain rows):
In[1]:
cards_df.head()
Out[1]:
card_id labels
0 'cid_1' []
1 'cid_2' []
3 'cid_3' [{'id': 'lid_a', 'name': 'lname_a'}, {'id': 'lid_b', 'name': 'lname_b'}]
4 'cid_4' [{'id': 'lid_c', 'name': 'lname_c'}]
I would like to create a new dataframe that expands the list of dictionary items into separate rows:
card_id label_id label_name
0 cid_3 lid_a lname_a
1 cid_3 lid_b lname_b
2 cid_4 lid_c lname_c
Upvotes: 1
Views: 1082
Reputation: 294526
Use pd.Series.str.len
to produce the appropriate values to pass to np.repeat
. This in turn is used to repeat the values of df.card_id.values
and make the first column of our new dataframe.
Then use pd.Series.sum
on df['labels']
to concatenate all lists into a single list. This new list is now perfect for passing to the pd.DataFrame
constructor. All that's left is to prepend a string to each column name and join to the column we created above.
pd.DataFrame(dict(
card_id=df.card_id.values.repeat(df['labels'].str.len()),
)).join(pd.DataFrame(df['labels'].sum()).add_prefix('label_'))
card_id label_id label_name
0 cid_3 lid_a lname_a
1 cid_3 lid_b lname_b
2 cid_4 lid_c lname_c
Setup
df = pd.DataFrame(dict(
card_id=['cid_1', 'cid_2', 'cid_3', 'cid_4'],
labels=[
[],
[],
[
{'id': 'lid_a', 'name': 'lname_a'},
{'id': 'lid_b', 'name': 'lname_b'}
],
[{'id': 'lid_c', 'name': 'lname_c'}],
]
))
Upvotes: 2
Reputation: 36555
You could do this as a dict
comprehension over the rows of your dataframe:
pd.DataFrame({{i: {'card_id': row['card_id'],
'label_id': label['label_id'],
'label_name': label['name']}}
for i, row in df.iterrows()
for label in row['labels']
Upvotes: 0