Reputation: 39
I need help formulating a cohort/retention query
I am trying to build a query to look at visitors who performed ActionX on their first visit (in the time frame) and then how many days later they returned to perform Action X again
The output I (eventually) need looks like this...
The table I am dealing with is an export of Google Analytics to BigQuery
If anyone could help me with this or anyone who has written a query similar that I can manipulate?
Thanks
Upvotes: 2
Views: 4254
Reputation: 41
I found this query on Turn Your App Data into Answers with Firebase and BigQuery (Google I/O'19)
It should work :)
#standardSQL
###################################################
# Part 1: Cohort of New Users Starting on DEC 24
###################################################
WITH
new_user_cohort AS (
SELECT DISTINCT
user_pseudo_id as new_user_id
FROM
`[your_project].[your_firebase_table].events_*`
WHERE
event_name = `[chosen_event] ` AND
#set the date from when starting cohort analysis
FORMAT_TIMESTAMP("%Y%m%d", TIMESTAMP_TRUNC(TIMESTAMP_MICROS(event_timestamp), DAY, "Etc/GMT+1")) = '20191224' AND
_TABLE_SUFFIX BETWEEN '20191224' AND '20191230'
),
num_new_users AS (
SELECT count(*) as num_users_in_cohort FROM new_user_cohort
),
#############################################
# Part 2: Engaged users from Dec 24 cohort
#############################################
engaged_users_by_day AS (
SELECT
FORMAT_TIMESTAMP("%Y%m%d", TIMESTAMP_TRUNC(TIMESTAMP_MICROS(event_timestamp), DAY, "Etc/GMT+1")) as event_day,
COUNT(DISTINCT user_pseudo_id) as num_engaged_users
FROM
`[your_project].[your_firebase_table].events_*`
INNER JOIN
new_user_cohort ON new_user_id = user_pseudo_id
WHERE
event_name = 'user_engagement' AND
_TABLE_SUFFIX BETWEEN '20191224' AND '20191230'
GROUP BY
event_day
)
####################################################################
# Part 3: Daily Retention = [Engaged Users / Total Users]
####################################################################
SELECT
event_day,
num_engaged_users,
num_users_in_cohort,
ROUND((num_engaged_users / num_users_in_cohort), 3) as retention_rate
FROM
engaged_users_by_day
CROSS JOIN
num_new_users
ORDER BY
event_day
Upvotes: 2
Reputation: 11787
If you use some techniques available in BigQuery, you can potentially solve this type of problem with very cost and performance effective solutions. As an example:
SELECT
init_date,
ARRAY((SELECT AS STRUCT days, freq, ROUND(freq * 100 / MAX(freq) OVER(), 2) FROM UNNEST(data) ORDER BY days)) data
FROM(
SELECT
init_date,
ARRAY_AGG(STRUCT(days, freq)) data
FROM(
SELECT
init_date,
data AS days,
COUNT(data) freq
FROM(
SELECT
init_date,
ARRAY(SELECT DATE_DIFF(PARSE_DATE("%Y%m%d", dts), PARSE_DATE("%Y%m%d", init_date), DAY) AS dt FROM UNNEST(dts) dts) data
FROM(
SELECT
MIN(date) init_date,
ARRAY_AGG(DISTINCT date) dts
FROM `Table123`
WHERE TRUE
AND EXISTS(SELECT 1 FROM UNNEST(hits) where eventinfo.eventCategory = 'recommendation') -- This is your 'ACTION TAKEN' filter
AND _TABLE_SUFFIX BETWEEN "20170724" AND "20170731"
GROUP BY fullvisitorid
)
),
UNNEST(data) data
GROUP BY init_date, days
)
GROUP BY init_date
)
I tested this query against our G.A data and selected customers who interacted with our recommendation system (as you can see in the filter selection WHERE EXISTS...
). Example of result (omitted absolute values of freq for privacy reasons):
As you can see, at day 28th for instance, 8% of customers came back 1 day later and interacted with the system again.
I recommend you to play around with this query and see if it works well for you. It's simpler, cheaper, faster and hopefully easier to maintain.
Upvotes: 1
Reputation: 39
So I think I may have cracked it... from this output I then would need to manipulate it (pivot table it) to make it look like the desired output.
Can anyone review this for me and let me know what you think?
`WITH
cohort_items AS (
SELECT
MIN( TIMESTAMP_TRUNC(TIMESTAMP_MICROS((visitStartTime*1000000 +
h.time*1000)), DAY) ) AS cohort_day, fullVisitorID
FROM
TABLE123 AS U,
UNNEST(hits) AS h
WHERE _TABLE_SUFFIX BETWEEN "20170701" AND "20170731"
AND 'ACTION TAKEN'
GROUP BY 2
),
user_activites AS (
SELECT
A.fullVisitorID,
DATE_DIFF(DATE(TIMESTAMP_TRUNC(TIMESTAMP_MICROS((visitStartTime*1000000 + h.time*1000)), DAY)), DATE(C.cohort_day), DAY) AS day_number
FROM `Table123` A
LEFT JOIN cohort_items C ON A.fullVisitorID = C.fullVisitorID,
UNNEST(hits) AS h
WHERE
A._TABLE_SUFFIX BETWEEN "20170701 AND "20170731"
AND 'ACTION TAKEN'
GROUP BY 1,2),
cohort_size AS (
SELECT
cohort_day,
count(1) as number_of_users
FROM
cohort_items
GROUP BY 1
ORDER BY 1
),
retention_table AS (
SELECT
C.cohort_day,
A.day_number,
COUNT(1) AS number_of_users
FROM
user_activites A
LEFT JOIN cohort_items C ON A.fullVisitorID = C.fullVisitorID
GROUP BY 1,2
)
SELECT
B.cohort_day,
S.number_of_users as total_users,
B.day_number,
B.number_of_users / S.number_of_users as percentage
FROM retention_table B
LEFT JOIN cohort_size S ON B.cohort_day = S.cohort_day
WHERE B.cohort_day IS NOT NULL
ORDER BY 1, 3
`
Thank you in advance!
Upvotes: 1
Reputation: 172994
Just to give you simple idea / direction
Below is for BigQuery Standard SQL
#standardSQL
SELECT
Date_of_action_first_taken,
ROUND(100 * later_1_day / Visits) AS later_1_day,
ROUND(100 * later_2_days / Visits) AS later_2_days,
ROUND(100 * later_3_days / Visits) AS later_3_days
FROM `OutputFromQuery`
You can test it with below dummy data from your question
#standardSQL
WITH `OutputFromQuery` AS (
SELECT '01.07.17' AS Date_of_action_first_taken, 1000 AS Visits, 800 AS later_1_day, 400 AS later_2_days, 300 AS later_3_days UNION ALL
SELECT '02.07.17', 1000, 860, 780, 860 UNION ALL
SELECT '29.07.17', 1000, 780, 120, 0 UNION ALL
SELECT '30.07.17', 1000, 710, 0, 0
)
SELECT
Date_of_action_first_taken,
ROUND(100 * later_1_day / Visits) AS later_1_day,
ROUND(100 * later_2_days / Visits) AS later_2_days,
ROUND(100 * later_3_days / Visits) AS later_3_days
FROM `OutputFromQuery`
The OutputFromQuery
data is as below:
Date_of_action_first_taken Visits later_1_day later_2_days later_3_days
01.07.17 1000 800 400 300
02.07.17 1000 860 780 860
29.07.17 1000 780 120 0
30.07.17 1000 710 0 0
and the final output is:
Date_of_action_first_taken later_1_day later_2_days later_3_days
01.07.17 80.0 40.0 30.0
02.07.17 90.0 78.0 86.0
29.07.17 80.0 12.0 0.0
30.07.17 70.0 0.0 0.0
Upvotes: 2