Reputation: 1074
How do I calculate the distance between each location in one data frame versus each in another when they have a different number of rows?
For example, say I have dataframe A with 3 rows and dataframe B with 4 rows. These are from the SNAP (United States federal food / beverage assistance for low-income households) Retailer Locator :
A
Store_Name Longitude Latitude
1 Food Lion 2213 -80.86581 35.59477
2 THE CORNER GROCERY -81.09917 35.26776
3 FISH WING -80.88245 35.21639
B
Store_Name Longitude Latitude
1 SUPERIOR GROCERIES -79.80839 35.73597
2 MORVEN TRUCK STOP -80.01122 34.88312
3 GREENHILL STORE -81.99146 35.34768
4 NORTHSIDE FOOD MARKET -77.94242 34.24158
Here are some failed attempts:
mapdist(as.character(a), as.character(b)) </code>
YIELDS: from and to entries that resemble the following and only one distance calculation that is possibly useful: c(35.594765, 35.267761, 35.216393)
distcomp <- mapdist(from = c(lon = as.character(a$Longitude), lat = as.character(a$Latitude)), to = c(lon = as.character(b$Longitude), lat = as.character(b$Latitude)), mode = "driving")
YIELDS: Error <code> arguments imply differing number of rows: 6, 8
# row-bind the rows even though this would mean extra work so that I could only have the distances from those in <code>a</code> to those in <code>b</code>:
c <- rbind(a,b)
distcomp <- mapdist(from = c(lon = as.character(c$Longitude), lat = as.character(c$Latitude)),
to = c(lon = as.character(c$Longitude), lat = as.character(c$Latitude)), mode = "driving")
YIELDS: A bunch of NAs in the results. Nothing helpful.
Upvotes: 3
Views: 207
Reputation: 26248
You can merge the tables together so that every row of each table is joined to every row on the other table (often referred to as a full-join), and then calculate the distances between each set of lat/lon coordinates.
In your question it appears you're asking for the driving distance, as given by Google Maps. Here I'm giving both the driving and the haversine distance.
## create a key column to join on
A$key <- 1
B$key <- 1
## Join together
AB <- merge(A, B, by = "key")
## Here I'm using the haversine distance calculation from geosphere
library(geosphere)
AB$distance <- distHaversine(p1 = matrix(c(AB$Longitude.x, AB$Latitude.x), ncol = 2),
p2 = matrix(c(AB$Longitude.y, AB$Latitude.y), ncol = 2))
head(AB)
# key Store_Name.x Longitude.x Latitude.x Store_Name.y Longitude.y Latitude.y distance
# 1 1 FoodLion2213 -80.86581 35.59477 SUPERIORGROCERIES -79.80839 35.73597 96915.65
# 2 1 FoodLion2213 -80.86581 35.59477 MORVENTRUCKSTOP -80.01122 34.88312 110963.56
# 3 1 FoodLion2213 -80.86581 35.59477 GREENHILLSTORE -81.99146 35.34768 105691.88
# 4 1 FoodLion2213 -80.86581 35.59477 NORTHSIDEFOODMARKET -77.94242 34.24158 306403.99
# 5 1 THECORNERGROCERY -81.09917 35.26776 SUPERIORGROCERIES -79.80839 35.73597 128061.51
# 6 1 THECORNERGROCERY -81.09917 35.26776 MORVENTRUCKSTOP -80.01122 34.88312 107968.35
To use Google maps distances you can use mapdist
from ggmap
as you were doing (but for some reason I could only get it to work in an apply
function)
library(ggmap)
mdist <- apply(AB, 1, function(x){
f = as.numeric(c(x[['Longitude.x']], x[['Latitude.x']]))
t = as.numeric(c(x[['Longitude.y']], x[['Latitude.y']]))
mapdist(f, t)
})
AB$mapDist <- do.call(rbind, mdist)
head(AB)
# key Store_Name.x Longitude.x Latitude.x Store_Name.y Longitude.y Latitude.y distance
# 1 1 FoodLion2213 -80.86581 35.59477 SUPERIORGROCERIES -79.80839 35.73597 96915.65
# 2 1 FoodLion2213 -80.86581 35.59477 MORVENTRUCKSTOP -80.01122 34.88312 110963.56
# 3 1 FoodLion2213 -80.86581 35.59477 GREENHILLSTORE -81.99146 35.34768 105691.88
# 4 1 FoodLion2213 -80.86581 35.59477 NORTHSIDEFOODMARKET -77.94242 34.24158 306403.99
# 5 1 THECORNERGROCERY -81.09917 35.26776 SUPERIORGROCERIES -79.80839 35.73597 128061.51
# 6 1 THECORNERGROCERY -81.09917 35.26776 MORVENTRUCKSTOP -80.01122 34.88312 107968.35
# mapDist.from mapDist.to mapDist.m
# 1 507-543 NC-150, Mooresville, NC 28117, USA 1504N N Fayetteville St, Asheboro, NC 27203, USA 118648
# 2 507-543 NC-150, Mooresville, NC 28117, USA 2876 US-52, Morven, NC 28119, USA 135294
# 3 507-543 NC-150, Mooresville, NC 28117, USA 136 Firethorn Ln, Rutherfordton, NC 28139, USA 149211
# 4 507-543 NC-150, Mooresville, NC 28117, USA 603 Red Cross St, Wilmington, NC 28401, USA 359219
# 5 101 McAdenville Rd, Lowell, NC 28098, USA 1504N N Fayetteville St, Asheboro, NC 27203, USA 160581
# 6 101 McAdenville Rd, Lowell, NC 28098, USA 2876 US-52, Morven, NC 28119, USA 137167
# mapDist.km mapDist.miles mapDist.seconds mapDist.minutes mapDist.hours
# 1 118.648 73.72787 5049 84.15000 1.402500
# 2 135.294 84.07169 5574 92.90000 1.548333
# 3 149.211 92.71972 5812 96.86667 1.614444
# 4 359.219 223.21869 13264 221.06667 3.684444
# 5 160.581 99.78503 5782 96.36667 1.606111
# 6 137.167 85.23557 5639 93.98333 1.566389
Upvotes: 3