Reputation: 4545
I have the following two lines in my code:
numSequences = tf.placeholder(tf.float32, shape=())
...
prediction = tf.reshape(predictionFlat, [numSequences, sequenceLength, vocabSize])
Is it possible to extract the scalar value out of the numSequences
tensor to use it as a value when defining the shape of the prediction
tensor?
EDIT
Here is more of my code:
x = tf.placeholder(tf.float32, [None, sequenceLength, vocabSize])
y = tf.placeholder(tf.float32, [None, sequenceLength, vocabSize])
numSequences = tf.placeholder(tf.float32, shape=())
xFlat = tf.contrib.layers.flatten(x) # [batchSize, sequenceLength*vocabSize]
W = tf.Variable(tf.random_normal([hiddenDimension, sequenceLength, vocabSize]))
b = tf.Variable(tf.random_normal([1, sequenceLength, vocabSize]))
WFlat = tf.contrib.layers.flatten(W)
bFlat = tf.contrib.layers.flatten(b)
cell = rnn.BasicLSTMCell(hiddenDimension, forget_bias=forgetRate)
outputs, states = tf.nn.static_rnn(cell, [xFlat], dtype=tf.float32)
predictionFlat = tf.add(tf.matmul(outputs[0], WFlat), bFlat) # outputs = [np.array([batchSize, hiddenDimension])] -> outputs[0] = [batchSize, hiddenDimension]
prediction = tf.reshape(predictionFlat, [numSequences, sequenceLength, vocabSize])
EDIT 2
I am attempting to do something similar where I need my sequenceLength
variable (a parameter of the shapes of my tensors) to be a placeholder rather than a fixed value. I have implemented this the same way I did for numSequences
, but I am getting the error shown below. I am failing to understand how this is different to the previous numSequences
implementation I originally asked about.
Code:
numSequences = tf.placeholder(tf.int32, shape=())
seqLength = tf.placeholder(tf.int32, shape=())
x = tf.placeholder(tf.float32, [None, seqLength, vocabSize])
y = tf.placeholder(tf.float32, [None, seqLength, vocabSize])
xFlat = tf.contrib.layers.flatten(x) # [batchSize, sequenceLength*vocabSize]
W = tf.Variable(tf.random_normal([hiddenDimension, seqLength, vocabSize]))
b = tf.Variable(tf.random_normal([1, seqLength, vocabSize]))
WFlat = tf.contrib.layers.flatten(W) # [hiddenDimension, sequenceLength*vocabSize]
bFlat = tf.contrib.layers.flatten(b) # [1, sequenceLength*vocabSize]
cell = rnn.BasicLSTMCell(hiddenDimension, forget_bias=forgetRate)
outputs, states = tf.nn.static_rnn(cell, [xFlat], dtype=tf.float32) # outputs = [[batchSize, hiddenDimension]]
predictionFlat = tf.add(tf.matmul(outputs[0], WFlat), bFlat) # outputs[0] = [batchSize, hiddenDimension]
prediction = tf.reshape(predictionFlat, [numSequences, seqLength, vocabSize])
Error:
x = tf.placeholder(tf.float32, [None, seqLength, vocabSize])
File "/usr/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1530, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "/usr/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1954, in _placeholder
name=name)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 705, in apply_op
attr_value.shape.CopyFrom(_MakeShape(value, key))
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 198, in _MakeShape
return tensor_shape.as_shape(v).as_proto()
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 798, in as_shape
return TensorShape(shape)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 434, in __init__
self._dims = [as_dimension(d) for d in dims_iter]
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 434, in <listcomp>
self._dims = [as_dimension(d) for d in dims_iter]
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 376, in as_dimension
return Dimension(value)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 32, in __init__
self._value = int(value)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'Tensor'
Upvotes: 2
Views: 783
Reputation: 24581
Yes, tensor shapes can usually be tensors themselves, however they need to be of integer type.
import tensorflow as tf
x = tf.constant([2, 3], dtype=tf.int32)
y = tf.zeros((x[0], x[1], 5))
sess = tf.InteractiveSession()
print(y.eval().shape)
# (2, 3, 5)
EDIT
Closer to your example,
import tensorflow as tf
x = tf.placeholder(tf.int32, shape=())
y = tf.zeros((500,))
sess = tf.InteractiveSession()
print(sess.run(tf.shape(tf.reshape(y, [x, x, 5])), {x: 10}))
# [10 10 5]
Of course, reshaping should preserve the total number of elements in y
, so it has only a limited usefulness.
EDIT 2
You cannot parameterize the shape of one placeholder by another placehoder. It does not make sense since placeholders are provided at the same time. Provide a placeholder with unknown shape then provide a parameterized reshape op as you did in your first example.
Upvotes: 2