Reputation: 5211
I have a data frame:
dat <- data.frame(diffsecs=(c(189, 245, 13988, 2396, 29601, 263, 297, 292, 230, 257, 192,
286, 236, 261, 286, 268, 294, 260, 286, 299, 514, 2287, 234,
195, 250, 519, 560, 3314, 12340, 186, 184, 180, 180, 180, 180,
180, 180, 180, 180, 180, 3072, 180, 180, 206, 180, 180, 180,
360, 180, 180, 180, 180, 5220, 180, 437, 246, 218, 212, 472,
2356, 2641, 363, 425, 757, 403, 181, 355, 192, 192, 784, 238,
250, 261, 272, 2554, 29524, 4482, 6762, 1252, 269, 303, 294,
286, 273, 289, 274, 216, 255, 180, 252, 322, 238, 583, 289, 317,
308, 305, 308, 312, 330)))
It has blocks of instances where there are multiple, consecutive rows equaling 180. I want to assign a binary vector which equals 1 when the value of diffsecs equals 180 and 0 otherwise. However, I only want it to equal 1 when in a block of 5 or more consecutive instances of 180. So if there is 3 consecutive values of 180 the binary vector will equal 0.
I tried using the loop
total<- nrow(dat)
len<- 1:total
for(i in len){
temp<- dat[i:(i+5),]
xdiff<- ifelse(mean(temp$diffsecs)>178 & mean(temp$diffsecs)<182 ,1,0)
temp2<- cbind(dat[i,],xdiff)
if(i==1) {dat2 <- temp2}
else {dat2<- rbind(dat2,temp2)}
}
But it doesn't manage it and assigns shorter blocks than required.
Upvotes: 2
Views: 190
Reputation: 57220
You can take advantage of the great rle
function and it's inverse counterpart :
RLE <- rle(dat$diffsecs)
RLE$values <- ifelse(RLE$values == 180 & RLE$lengths >= 5,1,0)
dat2 <- cbind(dat,binarycol=inverse.rle(RLE))
As correctly pointed out by @Frank, you can shorten the second line to :
RLE$values <- as.integer(RLE$values == 180 & RLE$lengths >= 5)
or even :
RLE$values <- RLE$values == 180 & RLE$lengths >= 5
if a vector of FALSE/TRUE
is ok for you instead of 0/1
Upvotes: 4
Reputation: 66819
With data.table, you can use rleid
:
library(data.table)
setDT(dat)
dat[, v :=
(diffsecs==180)*(.N >= 5)
, by = rleid(diffsecs == 180)][]
Upvotes: 2