Reputation: 31
We are trying to plot the predicted values and truth values on the same graph after fitting a model to predict a truth value using a RandomForestRegressor
in Python
of the three column dataset (click the link to download the full CSV
-dataset formatted as in the following
t_stamp,X,Y
0.000543,0,10
0.000575,0,10
0.041324,1,10
0.041331,2,10
0.041336,3,10
0.04134,4,10
0.041345,5,10
0.04135,6,10
0.041354,7,10
Here is how we do the prediction.
import pandas as pd
import numpy as np
import glob, os
from io import StringIO
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.metrics import accuracy_score
import math
from math import sqrt
from sklearn.cross_validation import train_test_split
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "data*.csv"))))
for i in range(1,10):
df['X_t'+str(i)] = df['X'].shift(i)
print(df)
df.dropna(inplace=True)
X = pd.DataFrame({ 'X_%d'%i : df['X'].shift(i) for i in range(10)}).apply(np.nan_to_num, axis=0).values
y = df['Y'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)
reg = RandomForestRegressor(criterion='mse')
reg.fit(X_train,y_train)
modelPred_test = reg.predict(X_test)
print(modelPred_test)
For comparison, we wish to generate a plot before prediction and after prediction. For the truth value, we tried it with
fig, ax = plt.subplots()
ax.plot(df['time'].values, df['Y'].values)
We wish to plot (in the same graph) the ground truth (time
as x-axis and the value of Y
as y-axis. When we do
ax.plot(df['time'].values, modelPred_test)
We are getting the following error.
raise ValueError("x and y must have same first dimension")
ValueError: x and y must have same first dimension
This means that we have less prediction values than we have time stamps in our dataset. To verify this, I did
print(df['time'].values.shape)
and print(modelPred_test.shape)
- and it outputs (258523,)
and (103410,)
respectively. How can we match which of my time values correspond to the prediction values, then i can use a subset of the time values for my plot command?
Upvotes: 1
Views: 5078
Reputation: 26176
You have to set your data like the following.
X = df.drop('Y', axis=1)
y = df['Y']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)
X_train = X_train.drop('time', axis=1)
X_test = X_test.drop('time', axis=1)
and then sort the datasets
index_values=range(0,len(y_test))
y_test.sort_index(inplace=True)
X_test.sort_index(inplace=True)
modelPred_test = reg.predict(X_test)
ax.plot(pd.Series(index_values), y_test.values)
finally, do the same plot for the predicted values of y
. Hope this helps.
Upvotes: 1
Reputation: 11602
You need to keep track of the indices for training and testing datasets. For example, you could define
train_index, test_index = train_test_split(df.index, test_size=0.40)
and then X_train = X[train_index]
, etc.
Then, you could plot the results via ax.plot(df['time'][test_index].values, modelPred_test[df.index == test_index])
.
Upvotes: 0