Reputation: 1630
Given: undirected weighted connected graph. s,t are vertices.
Question: Find an algorithm as efficient as possible that returns a path from s to t. In that path, the edge that has the highest weight, will has the least weight as possible. So if we have 5 paths from s,t and for every path we have the heaviest edge, so the minimum edge of these 5.
What I've tried:
I'm struggling to find an algorithm that can be ran in (1), Bellman ford won't work - because it has to be directed graph. Dijkstra won't work because we don't know if it has negative circles or negative edges. And Prim is for finding MST which I'm not aware of how it can help us in finding the shortest path. Any ideas?
And other from that, If you have an algorithm in mind that can solve this question, would be much appreciated.
Upvotes: 3
Views: 983
Reputation: 2253
Upvotes: 0
Reputation: 10458
You can solve it by converting into a MST problem, basically the path from s to t in the MST would be the path which has the least possible maximum weight
Upvotes: 1
Reputation: 33519
You can solve this with Kruskal's algorithm. Add edges as usual and stop as soon as s and t are in the same cluster.
The idea is that at each stage of the algorithm we have effectively added all edges below a certain weight threshold. Therefore, if s and t are in the same cluster then there is a route between them consisting entirely of edges with weight less than the threshold.
Upvotes: 1