Boaz
Boaz

Reputation: 26109

Performance of Arrays vs. Lists

Say you need to have a list/array of integers which you need iterate frequently, and I mean extremely often. The reasons may vary, but say it's in the heart of the inner most loop of a high volume processing.

In general, one would opt for using Lists (List) due to their flexibility in size. On top of that, msdn documentation claims Lists use an array internally and should perform just as fast (a quick look with Reflector confirms this). Neverless, there is some overhead involved.

Did anyone actually measure this? would iterating 6M times through a list take the same time as an array would?

Upvotes: 261

Views: 267187

Answers (15)

Andrew_STOP_RU_WAR_IN_UA
Andrew_STOP_RU_WAR_IN_UA

Reputation: 11426

Short answer:

In .NET List<T> and Array<T> have the same speed/performance because in .NET List is wrapper around Array.

Once more: List is an Array inside! In .NET List<T> is an ArrayList<T> from other languages.


Details what you need to use in which cases:

  • Array need to use:

    • So often as possible. It's fast and takes smallest RAM range for same amount information.
    • If you know exact count of cells needed
    • If data saved in array < 85000 b (85000/32 = 2656 elements for integer data)
    • If needed high Random Access speed
  • List need to use:

    • If needed to add cells to the end of list (often)
    • If needed to add cells in the beginning/middle of the list (NOT OFTEN)
    • If data saved in array < 85000 b (85000/32 = 2656 elements for integer data)
    • If needed high Random Access speed
  • LinkedList need to use:

    • If needed to add cells in the beginning/middle/end of the list (often)

    • If needed only sequential access (forward/backward)

    • If you need to save LARGE items, but items count is low.

    • Better do not use for large amount of items, as it's use additional memory for links.

      If you not sure that you need LinkedList -- YOU DON'T NEED IT.

      Just do not use it.


More details:

color meaning

Array vs List vs Linked List

Much more details:

https://stackoverflow.com/a/29263914/4423545

Upvotes: 154

user15719632
user15719632

Reputation:

static long[] longs = new long[500000];
static long[] longs2 = {};
static List<long> listLongs = new List<long> { };
static void Main(string[] args)
{
    Console.CursorVisible = false;
    Stopwatch time = new Stopwatch();

    time.Start();
    for (int f = 50000000; f < 50255000; f++)
    {
        listLongs.Add(f);
    }

    //List  Time: 1ms    Count : 255000
    Console.WriteLine("List Time: " + time.ElapsedMilliseconds + " | Count: " + listLongs.Count());

    time.Restart();
    time.Start();
    for (long i = 1; i < 500000; i++)
    {
        longs[i] = i * 200;
    }

    //Array Time: 2ms Length: 500000 (Unrealistic Data)
    Console.WriteLine("Array Time: " + time.ElapsedMilliseconds + " | Length: " + longs.Length);

    time.Restart();
    time.Start();
    for (int i = 50000000; i < 50055000; i++)
    {
        longs2 = longs2.Append(i).ToArray();
    }

    //Array Time: 17950ms Length: 55000
    Console.WriteLine("Array Append Time: " + time.ElapsedMilliseconds + " | Length: " + longs2.Length);

    Console.ReadLine();
}
Type Time Len
Array 2ms 500000
List 1ms 255000
Array Append 17950ms 55000

If you plan on appending small amounts of data to an array constantly then list is faster

It really comes down to how you are going to use the array.

Upvotes: 0

Florent H.
Florent H.

Reputation: 27

I have two clarifications to add to @Marc Gravell answer.

Tests were done in .NET 6 in x64 release.

Test code is at end.

Array and List not tested in same way

To test array and List under same condition, "for" should be modified as well.

for (int i = 0; i < arr.Length; i++)

New version :

int len = arr.Length;
for (int i = 0; i < len; i++)

Bottleneck List/foreach :

The bottleneck with List (List/foreach test) can be fixed.

Change it to :

list.ForEach(x => chk += x);

Test run on Laptop on Windows 10 pro 21H1 x64 with Core i7-10510U

List/for Count out: 1495ms (589725196)
List/for Count in: 1706ms (589725196)
Array/for Count out: 945ms (589725196)
Array/for Count in: 1072ms (589725196)
List/foreach: 2114ms (589725196)
List/foreach fixed: 1210ms (589725196)
Array/foreach: 1179ms (589725196)

Results interpretation

Array/for is faster than original test. (12% less)

List/foreach fixed is faster than List/for.

List/foreach fixed is close to Array/foreach.

I have run this test several times. Results change but orders of magnitude remain the same.

These results of this test show that you really have to have great need for performance to be forced to use Array.

Depending on method used to manipulate List, performance can be divided by 2.

This test is partial. There is no random access, direct access, write access test, etc.

Did I get some parts wrong or do you have any other ideas for improving performance?

Test code :

using System;
using System.Collections.Generic;
using System.Diagnostics;
static class Program
{
    static void Main()
    {        List<int> list = new List<int>(6000000);
        Random rand = new Random(12345);
        for (int i = 0; i < 6000000; i++)
        {
            list.Add(rand.Next(5000));
        }
        int[] arr = list.ToArray();

        int chk = 0;
        Stopwatch watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            int len = list.Count;
            for (int i = 0; i < len; i++)
            {
                chk += list[i];
            }
        }
        watch.Stop();
        Console.WriteLine("List/for Count out: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        Stopwatch watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            for (int i = 0; i < list.Count; i++)
            {
                chk += list[i];
            }
        }
        watch.Stop();
        Console.WriteLine("List/for Count in: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            int len = arr.Length;
            for (int i = 0; i < len; i++)
            {
                chk += arr[i];
            }
        }
        watch.Stop();
        Console.WriteLine("Array/for Count out: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            for (int i = 0; i < arr.Length; i++)
            {
                chk += arr[i];
            }
        }
        watch.Stop();
        Console.WriteLine("Array/for Count in: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in list)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("List/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            list.ForEach(i => chk += i);
        }
        watch.Stop();
        Console.WriteLine("List/foreach fixed: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in arr)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("Array/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        Console.ReadLine();
    }
}

Upvotes: 0

Rusty Nail
Rusty Nail

Reputation: 2710

In some brief tests I have found a combination of the two to be better in what I would call reasonably intensive Math:

Type: List<double[]>

Time: 00:00:05.1861300

Type: List<List<double>>

Time: 00:00:05.7941351

Type: double[rows * columns]

Time: 00:00:06.0547118

Running the Code:

int rows = 10000;
int columns = 10000;

IMatrix Matrix = new IMatrix(rows, columns);

Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();


for (int r = 0; r < Matrix.Rows; r++)
    for (int c = 0; c < Matrix.Columns; c++)
        Matrix[r, c] = Math.E;

for (int r = 0; r < Matrix.Rows; r++)
    for (int c = 0; c < Matrix.Columns; c++)
        Matrix[r, c] *= -Math.Log(Math.E);


stopwatch.Stop();
TimeSpan ts = stopwatch.Elapsed;

Console.WriteLine(ts.ToString());

I do wish we had some top notch Hardware Accelerated Matrix Classes like the .NET Team have done with the System.Numerics.Vectors Class!

C# could be the best ML Language with a bit more work in this area!

Upvotes: 1

PapaAtHome
PapaAtHome

Reputation: 604

Since I had a similar question this got me a fast start.

My question is a bit more specific, 'what is the fastest method for a reflexive array implementation'

The testing done by Marc Gravell shows a lot, but not exactly access timing. His timing include the looping over the array's and lists as well. Since I also came up with a third method that I wanted to test, a 'Dictionary', just to compare, I extended hist test code.

Firts, I do a test using a constant, which gives me a certain timing including the loop. This is a 'bare' timing, excluding the actual access. Then I do a test with accessing the subject structure, this gives me and 'overhead included' timing, looping and actual access.

The difference between 'bare' timing and 'overhead indluded' timing gives me an indication of the 'structure access' timing.

But how accurate is this timing? During the test windows will do some time slicing for shure. I have no information about the time slicing but I asume it is evenly distributed during the test and in the order of tens of msec which means that the accuracy for the timing should be in the order of +/- 100 msec or so. A bit rough estimate? Anyway a source of a systematic mearure error.

Also, the tests were done in 'Debug' mode with no optimalisation. Otherwise the compiler might change the actual test code.

So, I get two results, one for a constant, marked '(c)', and one for access marked '(n)' and the difference 'dt' tells me how much time the actual access takes.

And this are the results:

          Dictionary(c)/for: 1205ms (600000000)
          Dictionary(n)/for: 8046ms (589725196)
 dt = 6841

                List(c)/for: 1186ms (1189725196)
                List(n)/for: 2475ms (1779450392)
 dt = 1289

               Array(c)/for: 1019ms (600000000)
               Array(n)/for: 1266ms (589725196)
 dt = 247

 Dictionary[key](c)/foreach: 2738ms (600000000)
 Dictionary[key](n)/foreach: 10017ms (589725196)
 dt = 7279

            List(c)/foreach: 2480ms (600000000)
            List(n)/foreach: 2658ms (589725196)
 dt = 178

           Array(c)/foreach: 1300ms (600000000)
           Array(n)/foreach: 1592ms (589725196)
 dt = 292


 dt +/-.1 sec   for    foreach
 Dictionary     6.8       7.3
 List           1.3       0.2
 Array          0.2       0.3

 Same test, different system:
 dt +/- .1 sec  for    foreach
 Dictionary     14.4   12.0
       List      1.7    0.1
      Array      0.5    0.7

With better estimates on the timing errors (how to remove the systematic measurement error due to time slicing?) more could be said about the results.

It looks like List/foreach has the fastest access but the overhead is killing it.

The difference between List/for and List/foreach is stange. Maybe some cashing is involved?

Further, for access to an array it does not matter if you use a for loop or a foreach loop. The timing results and its accuracity makes the results 'comparible'.

Using a dictionary is by far the slowest, I only considered it because on the left side (the indexer) I have a sparse list of integers and not a range as is used in this tests.

Here is the modified test code.

Dictionary<int, int> dict = new Dictionary<int, int>(6000000);
List<int> list = new List<int>(6000000);
Random rand = new Random(12345);
for (int i = 0; i < 6000000; i++)
{
    int n = rand.Next(5000);
    dict.Add(i, n);
    list.Add(n);
}
int[] arr = list.ToArray();

int chk = 0;
Stopwatch watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    int len = dict.Count;
    for (int i = 0; i < len; i++)
    {
        chk += 1; // dict[i];
    }
}
watch.Stop();
long c_dt = watch.ElapsedMilliseconds;
Console.WriteLine("         Dictionary(c)/for: {0}ms ({1})", c_dt, chk);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    int len = dict.Count;
    for (int i = 0; i < len; i++)
    {
        chk += dict[i];
    }
}
watch.Stop();
long n_dt = watch.ElapsedMilliseconds;
Console.WriteLine("         Dictionary(n)/for: {0}ms ({1})", n_dt, chk);
Console.WriteLine("dt = {0}", n_dt - c_dt);

watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    int len = list.Count;
    for (int i = 0; i < len; i++)
    {
        chk += 1; // list[i];
    }
}
watch.Stop();
c_dt = watch.ElapsedMilliseconds;
Console.WriteLine("               List(c)/for: {0}ms ({1})", c_dt, chk);

watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    int len = list.Count;
    for (int i = 0; i < len; i++)
    {
        chk += list[i];
    }
}
watch.Stop();
n_dt = watch.ElapsedMilliseconds;
Console.WriteLine("               List(n)/for: {0}ms ({1})", n_dt, chk);
Console.WriteLine("dt = {0}", n_dt - c_dt);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    for (int i = 0; i < arr.Length; i++)
    {
        chk += 1; // arr[i];
    }
}
watch.Stop();
c_dt = watch.ElapsedMilliseconds;
Console.WriteLine("              Array(c)/for: {0}ms ({1})", c_dt, chk);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    for (int i = 0; i < arr.Length; i++)
    {
        chk += arr[i];
    }
}
watch.Stop();
n_dt = watch.ElapsedMilliseconds;
Console.WriteLine("Array(n)/for: {0}ms ({1})", n_dt, chk);
Console.WriteLine("dt = {0}", n_dt - c_dt);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    foreach (int i in dict.Keys)
    {
        chk += 1; // dict[i]; ;
    }
}
watch.Stop();
c_dt = watch.ElapsedMilliseconds;
Console.WriteLine("Dictionary[key](c)/foreach: {0}ms ({1})", c_dt, chk);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    foreach (int i in dict.Keys)
    {
        chk += dict[i]; ;
    }
}
watch.Stop();
n_dt = watch.ElapsedMilliseconds;
Console.WriteLine("Dictionary[key](n)/foreach: {0}ms ({1})", n_dt, chk);
Console.WriteLine("dt = {0}", n_dt - c_dt);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    foreach (int i in list)
    {
        chk += 1; // i;
    }
}
watch.Stop();
c_dt = watch.ElapsedMilliseconds;
Console.WriteLine("           List(c)/foreach: {0}ms ({1})", c_dt, chk);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    foreach (int i in list)
    {
        chk += i;
    }
}
watch.Stop();
n_dt = watch.ElapsedMilliseconds;
Console.WriteLine("           List(n)/foreach: {0}ms ({1})", n_dt, chk);
Console.WriteLine("dt = {0}", n_dt - c_dt);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    foreach (int i in arr)
    {
        chk += 1; // i;
    }
}
watch.Stop();
c_dt = watch.ElapsedMilliseconds;
Console.WriteLine("          Array(c)/foreach: {0}ms ({1})", c_dt, chk);

chk = 0;
watch = Stopwatch.StartNew();
for (int rpt = 0; rpt < 100; rpt++)
{
    foreach (int i in arr)
    {
        chk += i;
    }
}
watch.Stop();
n_dt = watch.ElapsedMilliseconds;
Console.WriteLine("Array(n)/foreach: {0}ms ({1})", n_dt, chk);
Console.WriteLine("dt = {0}", n_dt - c_dt);

Upvotes: 0

Cygon
Cygon

Reputation: 9610

I was worried that the Benchmarks posted in other answers would still leave room for the compiler to optimize, eliminate or merge loops so I wrote one that:

  • Used unpredictable inputs (random)
  • Runs a calculated with the result printed to the console
  • Modifies the input data each repetition

The result as that a direct array has about 250% better performance than an access to an array wrapped in an IList:

  • 1 billion array accesses: 4000 ms
  • 1 billion list accesses: 10000 ms
  • 100 million array accesses: 350 ms
  • 100 million list accesses: 1000 ms

Here's the code:

static void Main(string[] args) {
  const int TestPointCount = 1000000;
  const int RepetitionCount = 1000;

  Stopwatch arrayTimer = new Stopwatch();
  Stopwatch listTimer = new Stopwatch();

  Point2[] points = new Point2[TestPointCount];
  var random = new Random();
  for (int index = 0; index < TestPointCount; ++index) {
    points[index].X = random.NextDouble();
    points[index].Y = random.NextDouble();
  }

  for (int repetition = 0; repetition <= RepetitionCount; ++repetition) {
    if (repetition > 0) { // first repetition is for cache warmup
      arrayTimer.Start();
    }
    doWorkOnArray(points);
    if (repetition > 0) { // first repetition is for cache warmup
      arrayTimer.Stop();
    }

    if (repetition > 0) { // first repetition is for cache warmup
      listTimer.Start();
    }
    doWorkOnList(points);
    if (repetition > 0) { // first repetition is for cache warmup
      listTimer.Stop();
    }
  }

  Console.WriteLine("Ignore this: " + points[0].X + points[0].Y);
  Console.WriteLine(
    string.Format(
      "{0} accesses on array took {1} ms",
      RepetitionCount * TestPointCount, arrayTimer.ElapsedMilliseconds
    )
  );
  Console.WriteLine(
    string.Format(
      "{0} accesses on list took {1} ms",
      RepetitionCount * TestPointCount, listTimer.ElapsedMilliseconds
    )
  );

}

private static void doWorkOnArray(Point2[] points) {
  var random = new Random();

  int pointCount = points.Length;

  Point2 accumulated = Point2.Zero;
  for (int index = 0; index < pointCount; ++index) {
    accumulated.X += points[index].X;
    accumulated.Y += points[index].Y;
  }

  accumulated /= pointCount;

  // make use of the result somewhere so the optimizer can't eliminate the loop
  // also modify the input collection so the optimizer can merge the repetition loop
  points[random.Next(0, pointCount)] = accumulated;
}

private static void doWorkOnList(IList<Point2> points) {
  var random = new Random();

  int pointCount = points.Count;

  Point2 accumulated = Point2.Zero;
  for (int index = 0; index < pointCount; ++index) {
    accumulated.X += points[index].X;
    accumulated.Y += points[index].Y;
  }

  accumulated /= pointCount;

  // make use of the result somewhere so the optimizer can't eliminate the loop
  // also modify the input collection so the optimizer can merge the repetition loop
  points[random.Next(0, pointCount)] = accumulated;
}

Upvotes: 6

Fatih G&#220;RDAL
Fatih G&#220;RDAL

Reputation: 1519

Do not attempt to add capacity by increasing the number of elements.

Performance

List For Add: 1ms
Array For Add: 2397ms

    Stopwatch watch;
        #region --> List For Add <--

        List<int> intList = new List<int>();
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 60000; rpt++)
        {
            intList.Add(rand.Next());
        }
        watch.Stop();
        Console.WriteLine("List For Add: {0}ms", watch.ElapsedMilliseconds);
        #endregion

        #region --> Array For Add <--

        int[] intArray = new int[0];
        watch = Stopwatch.StartNew();
        int sira = 0;
        for (int rpt = 0; rpt < 60000; rpt++)
        {
            sira += 1;
            Array.Resize(ref intArray, intArray.Length + 1);
            intArray[rpt] = rand.Next();

        }
        watch.Stop();
        Console.WriteLine("Array For Add: {0}ms", watch.ElapsedMilliseconds);

        #endregion

Upvotes: 2

Travis
Travis

Reputation: 21

Here's one that uses Dictionaries, IEnumerable:

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;

static class Program
{
    static void Main()
    {
        List<int> list = new List<int>(6000000);

        for (int i = 0; i < 6000000; i++)
        {
                list.Add(i);
        }
        Console.WriteLine("Count: {0}", list.Count);

        int[] arr = list.ToArray();
        IEnumerable<int> Ienumerable = list.ToArray();
        Dictionary<int, bool> dict = list.ToDictionary(x => x, y => true);

        int chk = 0;
        Stopwatch watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            int len = list.Count;
            for (int i = 0; i < len; i++)
            {
                chk += list[i];
            }
        }
        watch.Stop();
        Console.WriteLine("List/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            for (int i = 0; i < arr.Length; i++)
            {
                chk += arr[i];
            }
        }
        watch.Stop();
        Console.WriteLine("Array/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in Ienumerable)
            {
                chk += i;
            }
        }

        Console.WriteLine("Ienumerable/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in dict.Keys)
            {
                chk += i;
            }
        }

        Console.WriteLine("Dict/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);


        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in list)
            {
                chk += i;
            }
        }

        watch.Stop();
        Console.WriteLine("List/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in arr)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("Array/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);



        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in Ienumerable)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("Ienumerable/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in dict.Keys)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("Dict/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        Console.ReadLine();
    }
}

Upvotes: 2

Marc Gravell
Marc Gravell

Reputation: 1062600

Very easy to measure...

In a small number of tight-loop processing code where I know the length is fixed I use arrays for that extra tiny bit of micro-optimisation; arrays can be marginally faster if you use the indexer / for form - but IIRC believe it depends on the type of data in the array. But unless you need to micro-optimise, keep it simple and use List<T> etc.

Of course, this only applies if you are reading all of the data; a dictionary would be quicker for key-based lookups.

Here's my results using "int" (the second number is a checksum to verify they all did the same work):

(edited to fix bug)

List/for: 1971ms (589725196)
Array/for: 1864ms (589725196)
List/foreach: 3054ms (589725196)
Array/foreach: 1860ms (589725196)

based on the test rig:

using System;
using System.Collections.Generic;
using System.Diagnostics;
static class Program
{
    static void Main()
    {
        List<int> list = new List<int>(6000000);
        Random rand = new Random(12345);
        for (int i = 0; i < 6000000; i++)
        {
            list.Add(rand.Next(5000));
        }
        int[] arr = list.ToArray();

        int chk = 0;
        Stopwatch watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            int len = list.Count;
            for (int i = 0; i < len; i++)
            {
                chk += list[i];
            }
        }
        watch.Stop();
        Console.WriteLine("List/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            for (int i = 0; i < arr.Length; i++)
            {
                chk += arr[i];
            }
        }
        watch.Stop();
        Console.WriteLine("Array/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in list)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("List/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in arr)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("Array/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        Console.ReadLine();
    }
}

Upvotes: 281

David Schmitt
David Schmitt

Reputation: 59316

[See also this question]

I've modified Marc's answer to use actual random numbers and actually do the same work in all cases.

Results:

         for      foreach
Array : 1575ms     1575ms (+0%)
List  : 1630ms     2627ms (+61%)
         (+3%)     (+67%)

(Checksum: -1000038876)

Compiled as Release under VS 2008 SP1. Running without debugging on a [email protected], .NET 3.5 SP1.

Code:

class Program
{
    static void Main(string[] args)
    {
        List<int> list = new List<int>(6000000);
        Random rand = new Random(1);
        for (int i = 0; i < 6000000; i++)
        {
            list.Add(rand.Next());
        }
        int[] arr = list.ToArray();

        int chk = 0;
        Stopwatch watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            int len = list.Count;
            for (int i = 0; i < len; i++)
            {
                chk += list[i];
            }
        }
        watch.Stop();
        Console.WriteLine("List/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            int len = arr.Length;
            for (int i = 0; i < len; i++)
            {
                chk += arr[i];
            }
        }
        watch.Stop();
        Console.WriteLine("Array/for: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in list)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("List/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);

        chk = 0;
        watch = Stopwatch.StartNew();
        for (int rpt = 0; rpt < 100; rpt++)
        {
            foreach (int i in arr)
            {
                chk += i;
            }
        }
        watch.Stop();
        Console.WriteLine("Array/foreach: {0}ms ({1})", watch.ElapsedMilliseconds, chk);
        Console.WriteLine();

        Console.ReadLine();
    }
}

Upvotes: 13

ShuggyCoUk
ShuggyCoUk

Reputation: 36438

if you are just getting a single value out of either (not in a loop) then both do bounds checking (you're in managed code remember) it's just the list does it twice. See the notes later for why this is likely not a big deal.

If you are using your own for(int int i = 0; i < x.[Length/Count];i++) then the key difference is as follows:

  • Array:
    • bounds checking is removed
  • Lists
    • bounds checking is performed

If you are using foreach then the key difference is as follows:

  • Array:
    • no object is allocated to manage the iteration
    • bounds checking is removed
  • List via a variable known to be List.
    • the iteration management variable is stack allocated
    • bounds checking is performed
  • List via a variable known to be IList.
    • the iteration management variable is heap allocated
    • bounds checking is performed also Lists values may not be altered during the foreach whereas the array's can be.

The bounds checking is often no big deal (especially if you are on a cpu with a deep pipeline and branch prediction - the norm for most these days) but only your own profiling can tell you if that is an issue. If you are in parts of your code where you are avoiding heap allocations (good examples are libraries or in hashcode implementations) then ensuring the variable is typed as List not IList will avoid that pitfall. As always profile if it matters.

Upvotes: 24

Frederik Gheysels
Frederik Gheysels

Reputation: 56934

I think the performance will be quite similar. The overhead that is involved when using a List vs an Array is, IMHO when you add items to the list, and when the list has to increase the size of the array that it's using internally, when the capacity of the array is reached.

Suppose you have a List with a Capacity of 10, then the List will increase it's capacity once you want to add the 11th element. You can decrease the performance impact by initializing the Capacity of the list to the number of items it will hold.

But, in order to figure out if iterating over a List is as fast as iterating over an array, why don't you benchmark it ?

int numberOfElements = 6000000;

List<int> theList = new List<int> (numberOfElements);
int[] theArray = new int[numberOfElements];

for( int i = 0; i < numberOfElements; i++ )
{
    theList.Add (i);
    theArray[i] = i;
}

Stopwatch chrono = new Stopwatch ();

chrono.Start ();

int j;

 for( int i = 0; i < numberOfElements; i++ )
 {
     j = theList[i];
 }

 chrono.Stop ();
 Console.WriteLine (String.Format("iterating the List took {0} msec", chrono.ElapsedMilliseconds));

 chrono.Reset();

 chrono.Start();

 for( int i = 0; i < numberOfElements; i++ )
 {
     j = theArray[i];
 }

 chrono.Stop ();
 Console.WriteLine (String.Format("iterating the array took {0} msec", chrono.ElapsedMilliseconds));

 Console.ReadLine();

On my system; iterating over the array took 33msec; iterating over the list took 66msec.

To be honest, I didn't expect that the variation would be that much. So, I've put my iteration in a loop: now, I execute both iteration 1000 times. The results are:

iterating the List took 67146 msec iterating the array took 40821 msec

Now, the variation is not that large anymore, but still ...

Therefore, I've started up .NET Reflector, and the getter of the indexer of the List class, looks like this:

public T get_Item(int index)
{
    if (index >= this._size)
    {
        ThrowHelper.ThrowArgumentOutOfRangeException();
    }
    return this._items[index];
}

As you can see, when you use the indexer of the List, the List performs a check whether you're not going out of the bounds of the internal array. This additional check comes with a cost.

Upvotes: 30

Frederik Gheysels
Frederik Gheysels

Reputation: 56934

Indeed, if you perform some complex calculations inside the loop, then the performance of the array indexer versus the list indexer may be so marginally small, that eventually, it doesn't matter.

Upvotes: 2

Stephan Eggermont
Stephan Eggermont

Reputation: 15907

The measurements are nice, but you are going to get significantly different results depending on what you're doing exactly in your inner loop. Measure your own situation. If you're using multi-threading, that alone is a non-trivial activity.

Upvotes: 2

sth
sth

Reputation: 229583

Since List<> uses arrays internally, the basic performance should be the same. Two reasons, why the List might be slightly slower:

  • To look up a element in the list, a method of List is called, which does the look up in the underlying array. So you need an additional method call there. On the other hand the compiler might recognize this and optimize the "unnecessary" call away.
  • The compiler might do some special optimizations if it knows the size of the array, that it can't do for a list of unknown length. This might bring some performance improvement if you only have a few elements in your list.

To check if it makes any difference for you, it's probably best adjust the posted timing functions to a list of the size you're planning to use and see how the results for your special case are.

Upvotes: 0

Related Questions