Reputation: 6825
I have been reading about Event Sourcing pattern, I have seen it used in the projects I have worked on, but I am still yet to see any benefit of it, while it makes the design much more complicated.
That is, many sources mention that Event Sourcing is good if you want to see Audit Log, be able to reconstruct the state of 15 days ago and I see that Event Sourcing solves all of that beautifully. But apart from that, what is the point?
Yes, I can imagine that if you are in relational world, then writes are comparatively slow as they lock the data and so on. But it is much easier to solve this problem, by going no-sql and using something like Cassandra. Cassandra's writes are super fast, as they are append-only (kinda temporary event source), it scales beautifully as well. Sources also mention that Event Sourcing helps scaling - how on earth it can help you to scale, when instead of storing ~1 row of data per user, now you have 9000 and instead of retrieving that single row, now you are replaying 9000 rows (or less, if you complicate the design even more and add some temporal snapshots of state and replay the current state form the last snapshot).
Any examples of real life problems that Event Sourcing solves or links would be much appreciated.
Upvotes: 3
Views: 2630
Reputation: 4002
While I haven't implemented a distributed, event-sourced sub-system as yet (so I'm no expert), I have been researching and evaluating the approach. Event sourcing provides a number of key benefits:
I'm sure there are more. To a large extent, the benefits of event sourcing depend on the baseline you are comparing it against (CRUD, event-driven DDD, CQRS, or whatever), and the domain.
Let's look at each of those in turn:
With event driven systems that fire events whenever the system is updated, you often have a problem: how do you both update the system state and fire the event in one go? If the 2nd operation fails, your system is in a broken, inconsistent state. Event sourcing provides a neat solution to this, since the system only requires a single operation for the state change, which will either succeed or fail atomically: the writing of the event. Other solutions tend to be more complex and less scalable - 2 phase commit, etc.
This is a big benefit in a large, high transaction system, where components are failing, being updated or replaced all the time while transactions are going on. The ability to terminate a process at any time without any worry about data corruption or consistency is a big benefit and helps you sleep at night.
In many domains you won't have concurrent writes to the same entities, or you won't require events since a state change has no knock-on effects, in which case event sourcing is unlikely to be a good approach, and simpler approaches like CRUD may be fine.
First of all, event streams make consistent writes very efficient - it's just an append only log, which makes replication and 'compare and set' simple to optimise. Something like Cassandra is quite slow in the scenario where you need to protect your invariants - that is, you need to validate a command against the current state of a 'row', and reject the update if the row changes before you have a chance to update it. You either need to use 'lightweight transactions' to ensure consistency, or have a single writer thread per partition, so that you can be sure that you can successfully validate a command against the current state of the system before allowing the update. Of course you can implement an event store in Cassandra, using either of these approaches (single thread/lightweight transactions).
Read scalability is the biggest performance benefit though - since you can build as many different eventually consistent projections (views) on the data as you want by reading from event streams, and horizontally scale query services on these views as much as you want. These views can use custom databases (Cassandra, graph databases) as necessary to allow queries to be optimised as much as you want. They can store denormalised data, to allow all required data to be fetched in a single (non-joined) database query. They can even store the projected state in memory, for maximum performance. While this can potentially be achieved without event sourcing, it is much more complex to implement.
If you don't have complex querying and high scalability requirements, event sourcing may not be the right solution.
If you need to look at your data in a new way, say you create a new client app or screen in an app, it's very easy to add new projections of the event streams as new, independent services. If you need to add some data to an existing read view that you missed, or fix a bug in the read view, you can just rebuild the views using the event streams and throw away the old ones. The advantages here vs. the non-event sourced case are:
Note that the above isn't about modifying event streams (which is tricker, see my comment on challenges below) - it's about using the existing event streams to enhance a view or create a new one.
There are simple ways to do this without event sourcing, such as using database views (with an RDBMS), but they aren't as scalable.
Event sourcing also has some challenges for evolvability - you need to take care of event versioning, probably using a combination of weak event schema (so you can add properties with default values) and stream replacement (when you want to do a bigger change to your events). Greg Young is writing a good book on this.
As you mentioned, you're not interested in this.
Upvotes: 3