Reputation: 51
df=pd.DataFrame({'A':['abcde','fghij','klmno','pqrst'], 'B':[1,2,3,4]})
I want to slice column A by column B eg: abcde[:1]=a, klmno[:3]=klm
but two statements all failed:
df['new_column']=df.A.map(lambda x: x.str[:df.B])
df['new_column']=df.apply(lambda x: x.A[:x.B])
TypeError: string indices must be integers
and
df['new_column']=df['A'].str[:df['B']]
new_column
return NaN
Try to get new_column
:
A B new_column
0 abcde 1 a
1 fghij 2 fg
2 klmno 3 klm
3 pqrst 4 pqrs
Thank you so much
Upvotes: 1
Views: 1898
Reputation: 214957
You need axis=1
in the apply
method to loop through rows:
df['new_column'] = df.apply(lambda r: r.A[:r.B], axis=1)
df
# A B new_column
#0 abcde 1 a
#1 fghij 2 fg
#2 klmno 3 klm
#3 pqrst 4 pqrs
A less idiomatic but usually faster solution is to use zip
:
df['new_column'] = [A[:B] for A, B in zip(df.A, df.B)]
df
# A B new_column
#0 abcde 1 a
#1 fghij 2 fg
#2 klmno 3 klm
#3 pqrst 4 pqrs
%timeit df.apply(lambda r: r.A[:r.B], axis=1)
# 1000 loops, best of 3: 440 µs per loop
%timeit [A[:B] for A, B in zip(df.A, df.B)]
# 10000 loops, best of 3: 27.6 µs per loop
Upvotes: 12