Reputation: 938
I have an issue with Python + Numpy + Pandas.
I am having a list of timestamps, with millisecond accuracy, encoded as strings. Then I round them to 10ms resolution, that goes well. The bug comes when I add the rounded timestamps to DataFrame as a new column - the values of datetime64 objects get totally destroyed.
Am I doing something wrong? Or is that a Pandas/NumPy error?
BTW, I have suspicion, that this bug comes up only on Windows - I did not notice it when I tried the same code on Mac yesterday (have not verified this).
import numpy
import pandas as pd
# We create a list of strings.
time_str_arr = ['2017-06-30T13:51:15.854', '2017-06-30T13:51:16.250',
'2017-06-30T13:51:16.452', '2017-06-30T13:51:16.659']
# Then we create a time array, rounded to 10ms (actually floored,
# not rounded), everything seems to be fine here.
rounded_time = numpy.array(time_str_arr, dtype="datetime64[10ms]")
rounded_time
# Then we create a Pandas DataFrame and assign the time array as a
# column to it. The datetime64 is destroyed.
d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
df = df.assign(wrong_time=rounded_time)
df
The output I get:
one two wrong_time
a 1.0 1.0 1974-10-01 18:11:07.585
b 2.0 2.0 1974-10-01 18:11:07.625
c 3.0 3.0 1974-10-01 18:11:07.645
d NaN 4.0 1974-10-01 18:11:07.665
Output of pd.show_versions():
INSTALLED VERSIONS
commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.20.1
pytest: 3.0.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.19.0
xarray: None
IPython: 5.3.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.2.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None
Upvotes: 1
Views: 1555
Reputation: 938
I opened an issue in Pandas Git repository. And got a suggested solution from Jeff Reback: Instead of creating weird 10ms datetime64 object, we simply round the timestamps using floor() function:
In [16]: # We create a list of strings.
...: time_str_arr = ['2017-06-30T13:51:15.854', '2017-06-30T13:51:16.250',
...: '2017-06-30T13:51:16.452', '2017-06-30T13:51:16.659']
In [17]: pd.to_datetime(time_str_arr).floor('10ms')
Out[17]: DatetimeIndex(['2017-06-30 13:51:15.850000', '2017-06-30 13:51:16.250000', '2017-06-30 13:51:16.450000', '2017-06-30 13:51:16.650000'], dtype='datetime64[ns]', freq=None)
Solution from https://github.com/pandas-dev/pandas/issues/17183
Upvotes: 0
Reputation: 863146
In my opinion it is bug, because obviously numpy.datetime64
is casted to Timestamp
s internally.
For me works use to_datetime
:
df = df.assign(wrong_time=pd.to_datetime(rounded_time))
print (df)
one two wrong_time
a 1.0 1.0 2017-06-30 13:51:15.850
b 2.0 2.0 2017-06-30 13:51:16.250
c 3.0 3.0 2017-06-30 13:51:16.450
d NaN 4.0 2017-06-30 13:51:16.650
Another solution is cast to ns
:
df = df.assign(wrong_time=rounded_time.astype('datetime64[ns]'))
print (df)
one two wrong_time
a 1.0 1.0 2017-06-30 13:51:15.850
b 2.0 2.0 2017-06-30 13:51:16.250
c 3.0 3.0 2017-06-30 13:51:16.450
d NaN 4.0 2017-06-30 13:51:16.650
Upvotes: 1