Reputation: 61
I am trying to make my MultinomialNB work. I use CountVectorizer on my training and test set and of course there are different words in both setzs. So I see, why the error
ValueError: dimension mismatch
occurs, but I dont know how to fix it. I tried CountVectorizer().transform
instead of CountVectorizer().fit_transform
as was suggested in an other post (SciPy and scikit-learn - ValueError: Dimension mismatch) but that just gives me
NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
how can I use CountVectorizer right?
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cross_validation import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import sklearn.feature_extraction
df = data
y = df["meal_parent_category"]
X = df['name_cleaned']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
X_train = CountVectorizer().fit_transform(X_train)
X_test = CountVectorizer().fit_transform(X_test)
algo = MultinomialNB()
algo.fit(X_train,y_train)
y = algo.predict(X_test)
print(classification_report(y_test,y_pred))
Upvotes: 1
Views: 2013
Reputation: 61
Ok, so after asking this question I figured it out :) Here is the solution with vocabulary and such:
df = train
y = df["meal_parent_category_cleaned"]
X = df['name_cleaned']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
vectorizer_train = CountVectorizer()
X_train = vectorizer_train.fit_transform(X_train)
vectorizer_test = CountVectorizer(vocabulary=vectorizer_train.vocabulary_)
X_test = vectorizer_test.transform(X_test)
algo = MultinomialNB()
algo.fit(X_train,y_train)
y_pred = algo.predict(X_test)
print(classification_report(y_test,y_pred))
Upvotes: 1