Reputation: 8288
I have a dataframe in which I would like to store 'raw' numpy.array
:
df['COL_ARRAY'] = df.apply(lambda r: np.array(do_something_with_r), axis=1)
but it seems that pandas
tries to 'unpack' the numpy.array.
Is there a workaround? Other than using a wrapper (see edit below)?
I tried reduce=False
with no success.
EDIT
This works, but I have to use the 'dummy' Data
class to wrap around the array, which is unsatisfactory and not very elegant.
class Data:
def __init__(self, v):
self.v = v
meas = pd.read_excel(DATA_FILE)
meas['DATA'] = meas.apply(
lambda r: Data(np.array(pd.read_csv(r['filename'])))),
axis=1
)
Upvotes: 76
Views: 162846
Reputation: 19
Suppose you have a DataFrame ds
and it has a column named 'class'. If ds['class']
contains strings or numbers, and you want to change them with numpy.ndarray
s or list
s, the following code would help. In the code, class2vector
is a numpy.ndarray
or list
and ds_class
is a filter condition.
ds['class'] = ds['class'].map(lambda x: class2vector if (isinstance(x, str) and (x == ds_class)) else x)
Upvotes: 1
Reputation: 1084
Preset the type of your column to object
, this will allow you to store a NumPy array as-is:
df['COL_ARRAY'] = pd.Series(dtype='object')
df['COL_ARRAY'] = df.apply(lambda r: np.array(do_something_with_r), axis=1)
Upvotes: 2
Reputation: 371
If you only want some of the columns you could do something lie this. Taking the example of @allenyllee,
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df[['a','b']].apply(lambda x: np.array(x), axis=1)
which outputs
id a b new
0 1 on on [on, on]
1 2 on off [on, off]
2 3 off on [off, on]
3 4 off off [off, off]
you can also change the order of [['a', 'b']] if you need a specific order.
Upvotes: 0
Reputation: 65
Here goes my 2 cents contribution (tested on Python 3.7):
import pandas as pd
import numpy as np
dataArray = np.array([0.0, 1.0, 2.0])
df = pd.DataFrame()
df['User Col A'] = [1]
df['Array'] = [dataArray]
Upvotes: 0
Reputation: 31
choose eval buildin function is easy to use and easy to read.
# First ensure use object store str
df['col2'] = self.df['col2'].astype(object)
# read
arr_obj = eval(df.at[df[df.col_1=='xyz'].index[0], 'col2']))
# write
df.at[df[df.col_1=='xyz'].index[0], 'col2'] = str(arr_obj)
real store display perfect human readable value:
col_1, col_2
xyz, "['aaa', 'bbb', 'ccc', 'ddd']"
Upvotes: 1
Reputation: 611
If you first set a column to have type object
, you can insert an array without any wrapping:
df = pd.DataFrame(columns=[1])
df[1] = df[1].astype(object)
df.loc[1, 1] = np.array([5, 6, 7, 8])
df
Output:
1
1 [5, 6, 7, 8]
Upvotes: 33
Reputation: 1074
Just wrap what you want to store in a cell to a list
object through first apply
, and extract it by index 0
of that list
through second apply
:
import pandas as pd
import numpy as np
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df.apply(lambda x: [np.array(x)], axis=1).apply(lambda x: x[0])
df
output:
id a b new
0 1 on on [1, on, on]
1 2 on off [2, on, off]
2 3 off on [3, off, on]
3 4 off off [4, off, off]
Upvotes: 0
Reputation: 30605
Use a wrapper around the numpy array i.e. pass the numpy array as list
a = np.array([5, 6, 7, 8])
df = pd.DataFrame({"a": [a]})
Output:
a 0 [5, 6, 7, 8]
Or you can use apply(np.array)
by creating the tuples i.e. if you have a dataframe
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df.apply(lambda r: tuple(r), axis=1).apply(np.array)
Output :
a b id new 0 on on 1 [on, on, 1] 1 on off 2 [on, off, 2] 2 off on 3 [off, on, 3] 3 off off 4 [off, off, 4]
df['new'][0]
Output :
array(['on', 'on', '1'], dtype='<U2')
Upvotes: 74
Reputation: 7225
You can wrap the Data Frame data args in square brackets to maintain the np.array
in each cell:
one_d_array = np.array([1,2,3])
two_d_array = one_d_array*one_d_array[:,np.newaxis]
two_d_array
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
pd.DataFrame([
[one_d_array],
[two_d_array] ])
0
0 [1, 2, 3]
1 [[1, 2, 3], [2, 4, 6], [3, 6, 9]]
Upvotes: 6