Reputation: 219
Tried to stack my table, however it works well if I didn't have the "country column". How do I remain first to columns "unstacked, and just stack the rows of the date. The Picture below demonstrates what I want.
The left Picture is how the table looks like, the right is the format I want to. So the question is how do I stack after rows, usually you stack after column levels.
All best,
Upvotes: 2
Views: 45
Reputation: 862661
You need:
cols = ['GEO','INDIC',1990,1991,1992]
df = pd.DataFrame({'GEO':['Austria']*3, 'INDIC':['dis','fin1','fin2'],
1990:[2,42,17],1991:[3,44,18],1992:[2,44,17]}, columns=cols)
print (df)
GEO INDIC 1990 1991 1992
0 Austria dis 2 3 2
1 Austria fin1 42 44 44
2 Austria fin2 17 18 17
1.
Create index by set_index
of all columns for not reshape and then add stack
, rename_axis
and reset_index
is for new column names:
df1 = df.set_index(['GEO','INDIC'])
.stack()
.rename_axis(['GEO','INDIC', 'year'])
.reset_index(name='quantity')
print (df1)
GEO INDIC year quantity
0 Austria dis 1990 2
1 Austria dis 1991 3
2 Austria dis 1992 2
3 Austria fin1 1990 42
4 Austria fin1 1991 44
5 Austria fin1 1992 44
6 Austria fin2 1990 17
7 Austria fin2 1991 18
8 Austria fin2 1992 17
2.
Reshape by melt
, there is different sorting of columns:
df1 = df.melt(id_vars=['GEO','INDIC'], var_name='year', value_name='quantity')
print (df1)
GEO INDIC year quantity
0 Austria dis 1990 2
1 Austria fin1 1990 42
2 Austria fin2 1990 17
3 Austria dis 1991 3
4 Austria fin1 1991 44
5 Austria fin2 1991 18
6 Austria dis 1992 2
7 Austria fin1 1992 44
8 Austria fin2 1992 17
Upvotes: 2