Reputation: 1694
I have a dataframe named df1 as following:
df1:
a b id
2010-01-01 2 3 21
2010-01-01 2 4 22
2010-01-01 3 5 23
2010-01-01 4 6 24
2010-01-02 1 4 21
2010-01-02 2 5 22
2010-01-02 3 6 23
2010-01-02 4 7 24
2010-01-03 1 8 21
2010-01-03 2 9 22
2010-01-03 3 10 23
2010-01-03 4 11 24
...........................
I want to shift the value of a, b and id, the i rows value become the i+1 rows value. As you can see the df1, the same date have several rows, and the id is different. I want to shift the df1, I mean the 2010-01-02 value to be the 2010-01-03 value based on the id(I mean that 2010-01-02 value of id 21, to be the 2010-01-03 value of id 21). Thanks!
My desired answer:
a b id
2010-01-01 Nan Nan Nan
2010-01-01 Nan Nan Nan
2010-01-01 Nan Nan Nan
2010-01-01 Nan Nan Nan
2010-01-02 2 3 21
2010-01-02 2 4 22
2010-01-02 3 5 23
2010-01-02 4 6 24
2010-01-03 1 4 21
2010-01-03 2 5 22
2010-01-03 3 6 23
2010-01-03 4 7 24
...........................
Upvotes: 0
Views: 136
Reputation: 862611
If all groups are same length (in sample 4) and DatetimeIndex
is sorted:
df2 = df.shift((df.index == df.index[0]).sum())
print (df2)
a b id
2010-01-01 NaN NaN NaN
2010-01-01 NaN NaN NaN
2010-01-01 NaN NaN NaN
2010-01-01 NaN NaN NaN
2010-01-02 2.0 3.0 21.0
2010-01-02 2.0 4.0 22.0
2010-01-02 3.0 5.0 23.0
2010-01-02 4.0 6.0 24.0
2010-01-03 1.0 4.0 21.0
2010-01-03 2.0 5.0 22.0
2010-01-03 3.0 6.0 23.0
2010-01-03 4.0 7.0 24.0
But if need shift values of index by one day:
df3 = df.shift(1, freq='D')
print (df3)
a b id
2010-01-02 2 3 21
2010-01-02 2 4 22
2010-01-02 3 5 23
2010-01-02 4 6 24
2010-01-03 1 4 21
2010-01-03 2 5 22
2010-01-03 3 6 23
2010-01-03 4 7 24
2010-01-04 1 8 21
2010-01-04 2 9 22
2010-01-04 3 10 23
2010-01-04 4 11 24
Upvotes: 2
Reputation: 30605
One of the way is with the help of shape if the dates are sorted i.e
df.shift(df.loc[df.index[0]].shape[0])
# Or len
df.shift(len(df.loc[df.index[0]]))
Output :
a b id 2010-01-01 NaN NaN NaN 2010-01-01 NaN NaN NaN 2010-01-01 NaN NaN NaN 2010-01-01 NaN NaN NaN 2010-01-02 2.0 3.0 21.0 2010-01-02 2.0 4.0 22.0 2010-01-02 3.0 5.0 23.0 2010-01-02 4.0 6.0 24.0 2010-01-03 1.0 4.0 21.0 2010-01-03 2.0 5.0 22.0 2010-01-03 3.0 6.0 23.0 2010-01-03 4.0 7.0 24.0
Upvotes: 2