Reputation: 1232
I have a big dataframe, the dataframe contain groups of people which are flag in the variable called "groups".
What I need to do for this dataframe now, is to presented in a more meaningful way.
For example in the following group 148, this is the table below:
df.select('gender','postcode','age','groups','bought').filter(df.groups==148).show()
+------+--------+---+----------+----------+
|gender|postcode|age| groups|bought |
+------+--------+---+----------+----------+
| 0| 2189| 25| 148|car |
| 0| 2192| 34| 148|house |
| 1| 2193| 37| 148|car |
| 1| 2194| 38| 148|house |
| 1| 2196| 54| 148|laptop |
| 1| 2197| 27| 148|laptop |
| 0| 2198| 44| 148|laptop |
+------+--------+---+----------+----------+
Gender has 0,1, so all these people in this group, will be changed to "people" if all 1, then female, if all 0 then male. the rule but not for this group.
Now postcodes, the lowest is 2189 and the highest is 2211, then each case will change to [2189 - 2198].
For age, the lowest is 18 and the highest is 62, so it will be [25-54]
for bought, I need to check which items have been bought, these are [car,house,laptop]
So, this group recoding will end up as:
+------+-------------+--------+----------+------------------+
|gender| postcode| age| groups| bought |
+------+-------------+--------+----------+------------------+
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
|person|[2189 - 2198]| [25-54]| 148|[car,house,laptop]|
+------+-------------+--------+----------+------------------+
and that will be done for all groups in the dataframe.
Any ideas? Here I found something similar but is in scala Thank you in advance!
Upvotes: 1
Views: 356
Reputation: 11955
Hope this helps!
import pyspark.sql.functions as f
from pyspark.sql.types import StringType
df = sc.parallelize([
[0, 2189, 25, 148, 'car'],
[0, 2192, 34, 148, 'house'],
[1, 2193, 37, 148, 'car'],
[1, 2194, 38, 148, 'house'],
[1, 2196, 54, 148, 'laptop'],
[1, 2197, 27, 148, 'laptop'],
[0, 2198, 44, 148, 'laptop']
]).toDF(('gender', 'postcode', 'age', 'groups', 'bought'))
df.show()
df1 = df.groupBy("groups").agg(f.collect_set("bought")).withColumnRenamed("collect_set(bought)","bought")
df2 = df.groupBy("groups").agg(f.min("age"), f.max("age")). \
withColumn("age", f.concat(f.col("min(age)"), f.lit("-"), f.col("max(age)"))).select("groups","age")
df3 = df.groupBy("groups").agg(f.min("postcode"), f.max("postcode")). \
withColumn("postcode", f.concat(f.col("min(postcode)"), f.lit("-"), f.col("max(postcode)"))).select("groups","postcode")
def modify_values(l):
if l == [0, 1]:
return "person"
else:
if l == [0]:
return "male"
else:
return "female"
modified_val = f.udf(modify_values, StringType())
df4 = df.groupBy("groups").agg(f.collect_set("gender")).withColumn("gender",modified_val("collect_set(gender)")).select("groups","gender")
merged_df = df1.join(df2, "groups").join(df3, "groups").join(df4, "groups")
merged_df.show()
Output is:
+------+--------------------+-----+---------+------+
|groups| bought| age| postcode|gender|
+------+--------------------+-----+---------+------+
| 148|[laptop, house, car]|25-54|2189-2198|person|
+------+--------------------+-----+---------+------+
Don't forget to let us know if it solved your problem
Upvotes: 2