Reputation: 1363
I am working on a problem and were trying to solve using MXNet. I was trying to use a custom metric in the code. The code for the same is:
def calculate_sales_from_bucket(bucketArray):
return numpy.asarray(numpy.power(10, calculate_max_index_from_bucket(bucketArray)))
def calculate_max_index_from_bucket(bucketArray):
answerArray = []
for bucketValue in bucketArray:
index, value = max(enumerate(bucketValue), key=operator.itemgetter(1))
answerArray.append(index)
return answerArray
def custom_metric(label, bucketArray):
return numpy.mean(numpy.power(calculate_sales_from_bucket(label)-calculate_sales_from_bucket(bucketArray),2))
model.fit(
train_iter, # training data
eval_data=val_iter, # validation data
batch_end_callback = mx.callback.Speedometer(batch_size, 1000), # output progress for each 1000 data batches
num_epoch = 10, # number of data passes for training
optimizer = 'adam',
eval_metric = mx.metric.create(custom_metric),
optimizer_params=(('learning_rate', 1),)
)
I am getting the output as:
INFO:root:Epoch[0] Validation-custom_metric=38263835679935.953125
INFO:root:Epoch[1] Batch [1000] Speed: 91353.72 samples/sec Train-custom_metric=39460550891.057487
INFO:root:Epoch[1] Batch [2000] Speed: 96233.05 samples/sec Train-custom_metric=9483.127650
INFO:root:Epoch[1] Batch [3000] Speed: 90828.09 samples/sec Train-custom_metric=57538.891485
INFO:root:Epoch[1] Batch [4000] Speed: 93025.54 samples/sec Train-custom_metric=59861.927745
INFO:root:Epoch[1] Train-custom_metric=8351.460495
INFO:root:Epoch[1] Time cost=9.466
INFO:root:Epoch[1] Validation-custom_metric=38268.250469
INFO:root:Epoch[2] Batch [1000] Speed: 94028.96 samples/sec Train-custom_metric=58864.659051
INFO:root:Epoch[2] Batch [2000] Speed: 94562.38 samples/sec Train-custom_metric=9482.873310
INFO:root:Epoch[2] Batch [3000] Speed: 93198.68 samples/sec Train-custom_metric=57538.891485
INFO:root:Epoch[2] Batch [4000] Speed: 93722.89 samples/sec Train-custom_metric=59861.927745
INFO:root:Epoch[2] Train-custom_metric=8351.460495
INFO:root:Epoch[2] Time cost=9.341
INFO:root:Epoch[2] Validation-custom_metric=38268.250469
In this case, irrespective of change in train-custom_metric for batches, the train-custom_metric is still the same. Like in case of batch 1000 for epoch 1 and epoch 2.
I believe that this is an issue as the Train-custom_metric and Validation-custom_metric is not changing irrespective of the value of epoch steps. I am a beginner in MXNet and I might be wrong in this assumption.
Can you confirm if I am passing eval_metric in the correct way?
Upvotes: 0
Views: 147
Reputation: 226
Not sure I understand the problem. Your output shows train-custom-metric giving different values, it just happens to have given the same result for the last two batches of each epoch. That may just be a quirk of how your model is converging.
One thing to be clear on is that eval_metric is only used to give debug output -- it's not actually used as the loss function during learning:
https://github.com/apache/incubator-mxnet/issues/1915
Upvotes: 1