Reputation: 63
I have two dataframes. First (df1) contains Name, ID and PIN. Second contains Identifier, City and Country. Dataframe shown below.
df1 = pd.DataFrame({"Name": ["Sam", "Ajay", "Lee", "Lee Yong Dae", "Cai Yun"], "ID": ["S01", "A01", "L02", "L03", "C01"], "PIN": ["SM392", "AA09", "Lee101", "Lee201", "C101"]})
df2 = pd.DataFrame({"Identifier": ["Sam", "L02", "C101"], "City": ["Moscow", "Seoul", "Beijing"], "Country": ["Russia", "Korea", "China"]})
I want to merge the dataframes if either name or ID or PIN matches with the identifier of df2. The expected output is:
City Country Name PIN Student ID
0 Moscow Russia Sam SM392 S01
1 0 0 Ajay AA09 A01
2 Seoul Korea Lee Lee101 L02
3 0 0 Lee Yong Dae Lee201 L03
4 Beijing China Cai Yun C101 C01
Upvotes: 0
Views: 81
Reputation: 181
This is perhaps not the most elegant solution, but it works for me. You have to create 3 separate merges and combine the results.
The code below gives the expected output (with nan values instead of 0 for the unmatched elements of the DataFrame)
import numpy as np
import pandas as pd
#Initial data
df1 = pd.DataFrame({"Name": ["Sam", "Ajay", "Lee", "Lee Yong Dae", "Cai Yun"], "ID": ["S01", "A01", "L02", "L03", "C01"], "PIN": ["SM392", "AA09", "Lee101", "Lee201","C101"]})
df2 = pd.DataFrame({"Identifier": ["Sam", "L02", "C101"], "City": ["Moscow", "Seoul", "Beijing"], "Country": ["Russia", "Korea", "China"]})
def merge_three(df1,df2):
#Perform three seperate merges
df3=df1.merge(df2, how='outer', left_on='ID', right_on='Identifier')
df4=df1.merge(df2, how='outer', left_on='Name', right_on='Identifier')
df5=df1.merge(df2, how='outer', left_on='PIN', right_on='Identifier')
#Copy 2nd and 3rd merge results to df3
df3['City_x']=df4['City']
df3['Country_x']=df4['Country']
df3['City_y']=df5['City']
df3['Country_y']=df5['Country']
#Merge the correct City and Country values. Use max to remove the NaN values
df6=df3[['City','Country','Name','PIN','ID']]
df6['City']=np.max([df3['City'],df3['City_x'],df3['City_y']],axis=0)
df6['Country']=np.max([df3['Country'],df3['Country_x'],df3['Country_y']],axis=0)
#Remove extra un-matched rows from merge
df_final=df6[df6['Name'].notnull()]
return df_final
df_out = merge_three(df1,df2)
Output:
df_out
City Country Name PIN ID
0 Moscow Russia Sam SM392 S01
1 NaN NaN Ajay AA09 A01
2 Seoul Korea Lee Lee101 L02
3 NaN NaN Lee Yong Dae Lee201 L03
4 Beijing China Cai Yun C101 C01
Upvotes: 1
Reputation: 3851
Not sure, but maybe this is what you are looking for:
a = df1.merge(df2, left_on='ID', right_on='Identifier')
b = df1.merge(df2, left_on='Name', right_on='Identifier')
с = df1.merge(df2, left_on='PIN', right_on='Identifier')
df = a.append(b).append(с)
df
ID Name PIN City Country Identifier
0 L02 Lee Lee101 Seoul Korea L02
0 S01 Sam SM392 Moscow Russia Sam
0 C01 Cai Yun C101 Beijing China C101
Upvotes: 0